Skip to main content

The Cellular Basis of Synaptic Transmission: An Overview

  • Conference paper
Cellular and Molecular Basis of Synaptic Transmission

Part of the book series: NATO ASI Series ((ASIH,volume 21))

Abstract

The beginning of cell biology and the role of instrumentation in its development The recent growth of interest of biologists of all complexions in the techniques of molecular genetics has tended to thrust into the background an earlier revolution in our understanding of cellular function which has by no means yet run its full course and which led to the emergence of a new subject, that of cell biology. One of the two instruments of that revolution was the electron microscope: or, rather, the development of reliable, user-friendly commercial electron microscopes and ancillary equipment such as knife-makers and ultratomes as well as improvements in embedding plastics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Agoston DV, Conlon JM (1986) Presence of vasoactive intestinal polypeptide-like immunoreactivity in the cholinergic electromotor system of Torpedo marmorata. J Neurochem 47:445– 453

    Article  PubMed  CAS  Google Scholar 

  • Agoston DV, Dowe GHC, Fiedler W, Giompres PE, Roed IS, Walker JH, Whittaker VP, Yamaguchi T (1986) A kinetic study of stimulus- induced vesicle recycling in electromotor nerve terminals using labile and stable vesicle markers. J Neurochem 47: 1584–1592

    Article  PubMed  CAS  Google Scholar 

  • Barker LA, Dowdall MJ, Whittaker VP (1972) Choline metabolism in the cerebral cortex of guinea pigs: stable bound acetylcholine. Biochem J 130: 1063–1080

    PubMed  CAS  Google Scholar 

  • Chakrin LW, Marchbanks RM, Mitchell JF, Whittaker VP (1972) The origin of the acetylcholine released from the surface of the cortex. J Neurochem 19: 2727–2736

    Article  PubMed  CAS  Google Scholar 

  • Cleugh J, Gaddum JH, Mitchell AA, Smith MW, Whittaker VP (1964) Substance P in brain extracts. J Physiol 170: 69–85

    PubMed  CAS  Google Scholar 

  • Collier B, Araujo DM, Lapchak PA (1987) Presynaptic effects of peptides at cholinergic synapses. In: Dowdall MJ, Hawthorne JN (eds) Cellular and Molecular Basis of Cholinergic Function. Horwood, Chichester, pp 454–459

    Google Scholar 

  • De Robertis E, Arnaiz GR de L, de Iraldi AP (1962) Isolation of synaptic vesicles from nerve endings of the rat brain. Nature (Lond) 194: 794–795

    Article  Google Scholar 

  • Dowdall MJ, Zimmermann H (1977) The isolation of pure cholinergic nerve termini sacs (T-sacs) from the electric organ of juvenile Torpedo. Neuroscience 2: 405–421

    Article  PubMed  CAS  Google Scholar 

  • Ducis I, Whittaker VP (1985) High affinity sodium-gradient- dependent transport of choline into vesiculated presynaptic plasma membrane fragments from the electric organ of Torpedo marmorata and reconstitution of the solubilized transporter into liposomes. Biochim biophys Acta 815: 109–127

    Article  PubMed  CAS  Google Scholar 

  • Fiedler W, Borroni E, Ferretti P (1986) An immunohistochemical study of synaptogenesis in the electric organ of Torpedo marmorata by use of antisera to vesicular and presynaptic plasma membrane components. Cell Tiss Res 246: 439–446

    Article  CAS  Google Scholar 

  • Giompres PE, Whittaker VP (1986) The density and free water of cholinergic synaptic vesicles as a function of osmotic pressure. Biochim biophys Acta 882: 398–409

    Article  PubMed  CAS  Google Scholar 

  • Giompres PE, Zimmermann H, Whittaker VP (1981a) Purification of small dense vesicles from stimulated Torpedo electric tissue by glass bead column chromatography. Neuroscience 6: 765–774

    Article  PubMed  CAS  Google Scholar 

  • Giompres PE, Zimmermann H, Whittaker VP (1981b) Changes in the biochemical and biophysical parameters of cholinergic synaptic vesicles on transmitter release and during a subsequent period of rest. Neuroscience 6: 775–785

    Article  PubMed  CAS  Google Scholar 

  • Gray EG, Whittaker VP (1960) The isolation of synaptic vesicles from the central nervous system. J Physiol 153: 35–37 P

    Google Scholar 

  • Gray EG, Whittaker VP (1962) The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J Anat (Lond) 96: 79–88

    CAS  Google Scholar 

  • Gray EG, Whittaker VP (1981) This week’s citation classic. Current Contents 24: 16

    Google Scholar 

  • Home RW, Whittaker VP (1962) The use of the negative staining method for the electron-microscopic study of subcellular particles from animal tissues. Z Zellforsch 58: 1–16

    Article  Google Scholar 

  • Israël M, Whittaker VP (1965) The isolation of mossy fibre endings from the granular layer of the cerebellar cortex. Experientia 21: 325–326

    Article  PubMed  Google Scholar 

  • Israël M, Gautron J, Lesbats B (1970) Fractionnement de l’organe électrique de la torpille: localisation subcellulaire de 1’acetylcholine. J Neurochem 17: 1441–1450

    Article  PubMed  Google Scholar 

  • Israël H, Manaranche R, Mastour-Franchon P, Morel N (1976) Isolation of pure cholinergic nerve endings from the electric organ of Torpedo marmorata. Biochem J 160: 113–115

    PubMed  Google Scholar 

  • Jones RT, Walker JH, Richardson PJ, Fox GQ, Whittaker VP (1981) Immunohistochemical localization of cholinergic nerve terminals. Cell Tiss Res 218: 355–373

    Article  CAS  Google Scholar 

  • Kiene ML, Stadler H (1987) Synaptic vesicles in electromotoneurones: I. Axonal transport, site of transmitter uptake and processing of a core proteoglycan during maturation. EMBO J 6: 2209–2215

    PubMed  CAS  Google Scholar 

  • Kosh JW, Whittaker VP (1985) Is propionylcholine present in or synthesized by electric organ? J Neurochem 45: 1148–1153

    Article  PubMed  CAS  Google Scholar 

  • Lapetina EG, Soto EF, De Robertis E (1968) Lipids and proteolipids in isolated subcellular membranes of rat brain cortex. J Neurochem 15: 437–445

    Article  PubMed  CAS  Google Scholar 

  • Luqmani YA, Sudlow G, Whittaker VP (1980) Homocholine and acetylhomocholine: false transmitters in the cholinergic electromotor system of Torpedo. Neuroscience 5: 153–160

    Article  PubMed  CAS  Google Scholar 

  • Meunier FM (1984) Relationship between presynaptic membrane potential and acetylcholine release in synaptosomes from Torpedo electric organ. J Physiol 354: 121–137

    PubMed  CAS  Google Scholar 

  • Morris SJ (1973) Removal of residual amounts of acetylcholinesterase and membrane contamination from synaptic vesicles isolated from the electric organ of Torpedo. J Neurochem 21: 713–715

    Article  PubMed  CAS  Google Scholar 

  • Nagy A, Baker RR, Morris SJ, Whittaker VP (1976) The preparation and characterization of synaptic vesicles of high purity. Brain Res 109: 285–309

    Article  PubMed  CAS  Google Scholar 

  • Ohsawa K, Dowe GHC, Morris SJ, Whittaker VP (1979) The lipid and protein content of cholinergic synaptic vesicles from the electric organ of Torpedo marmorata purified to constant composition: implications for vesicle structure. Brain Res 161: 447–457

    Article  PubMed  CAS  Google Scholar 

  • Richardson PJ, Whittaker VP (1981) The Na+ and K+ content of isolated Torpedo synaptosomes and its effect on choline uptake. J Neurochem 36: 1536–1542

    Article  PubMed  CAS  Google Scholar 

  • Richardson PJ, Walker JH, Jones RT, Whittaker VP (1982) Identification of a cholinergic-specific antigen Chol-1 as a ganglioside. J Neurochem 38: 1605–1614

    Article  PubMed  CAS  Google Scholar 

  • Richardson PJ, Siddle K, Luzio PJ (1984) Immunoaffinity purification of intact, metabolically active, cholinergic nerve terminals from mammalian brain. Biochem J 219: 647–654

    PubMed  CAS  Google Scholar 

  • Rylett RJ, Whittaker VP (1987) Identification of the high-affinity choline transporter of Torpedo electromotor nerve terminals using a 3H-choline mustard ligand. J Neurochem 48:S66A

    Google Scholar 

  • Schwarzenfeld I von (1979) Origin of transmitters released by electrical stimulation from a small, metabolically very active vesicular pool of cholinergic synapses in guinea-pig cerebral cortex. Neuroscience 4: 477–493

    Article  Google Scholar 

  • Sheridan MN, Whittaker VP (1964) Isolated synaptic vesicles: morphology and acetylcholine content. J Physiol 175: 25–26 P

    Google Scholar 

  • Sheridan MN, Whittaker VP and Israël M (1966) The subcellular fractionation of the electric organ of Torpedo. Z Zellforsch 74: 291–307

    Article  CAS  Google Scholar 

  • Stadler H, Tsukita S (1984) Synaptic vesicles contain an ATP-dependent proton pump and show ‘knob-like’ protrusions on their surface. EMBO J 3: 3333–3337

    PubMed  CAS  Google Scholar 

  • Suszkiw JB, Zimmermann H, Whittaker VP (1978) Vesicular storage and release of acetylcholine in Torpedo electroplaque synapses. J Neurochem 30: 1269–1280

    Article  PubMed  CAS  Google Scholar 

  • Tashiro T, Stadler H (1978) Chemical composition of cholinergic synaptic vesicles from Torpedo marmorata based on improved purification. Eur J Biochem 90: 479–487

    Article  PubMed  CAS  Google Scholar 

  • Weiler M, Roed IS, Whittaker VP (1982) The kinetics of acetylcholine turnover in a resting cholinergic nerve terminal and the magnitude of the cytoplasmic compartment. J Neurochem 38: 1187–1191

    Article  PubMed  CAS  Google Scholar 

  • Whittaker VP (1959) The isolation and characterization of acetylcholine-containing particles from brain. Biochem J 72: 694–706

    PubMed  CAS  Google Scholar 

  • Whittaker VP (1960) The binding of neurohormones by subcellular particles of brain tissue. Proc 4th int Neurochem Symp Varenna June 1960. In: Kety SS, Elkes J (eds) Regional Neurochemistry: the Regional Chemistry, Physiology and Pharmacology of the Nervous System. Pergamon, Oxford 1962, pp 259–263

    Google Scholar 

  • Whittaker VP (1963) The separation of subcellular structures from brain tissue. Biochem Soc Symp 23: 109–126

    Google Scholar 

  • Whittaker VP (1964) Investigations on the storage sites of biogenic amines in the central nervous system. Prog Brain Res 8:90–117 (see also General Discussion, pp 145–147 )

    Google Scholar 

  • Whittaker VP (1976) Tissue fractionation methods in brain research. Prog Brain Res 45: 45–65

    Article  PubMed  CAS  Google Scholar 

  • Whittaker VP (1984a) The synaptosome. In: Lajtha A (ed) Handbook of Neurochemistry, 2nd edn, vol 7. Plenum, New York, pp 1–40

    Google Scholar 

  • Whittaker VP (1984b) The synaptic vesicle, ibid, pp 41–69

    Google Scholar 

  • Whittaker VP (1984c) The structure and function of cholinergic synaptic vesicles. Biochem Soc Trans 12: 561–576

    PubMed  CAS  Google Scholar 

  • Whittaker VP, Luqmani YA (1980) False transmitters in the cholinergic system: implications for the vesicle theory of transmitter storage and release. Gen Pharmacol 11: 7–14

    Article  PubMed  CAS  Google Scholar 

  • Whittaker VP, Michaelson IA, Kirkland RJA (1964) The separation of synaptic vesicles from nerve-ending particles (‘synaptosomes’). Biochem J 90: 293–303

    PubMed  CAS  Google Scholar 

  • Whittaker VP, Essman WB, Dowe GHC (1972) The isolation of pure cholinergic synaptic vesicles from the electric organs of elasmobranch fish of the family Torpedinidae. Biochem J 128: 833–846

    PubMed  CAS  Google Scholar 

  • Zimmermann H, Denston CR (1972) Separation of synaptic vesicles of different functional states from the cholinergic synapses of the Torpedo electric organ. Neuroscience 2: 715–730

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Whittaker, V.P. (1988). The Cellular Basis of Synaptic Transmission: An Overview. In: Zimmermann, H. (eds) Cellular and Molecular Basis of Synaptic Transmission. NATO ASI Series, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73172-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73172-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73174-7

  • Online ISBN: 978-3-642-73172-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics