Advertisement

Gene Strategy in the Modulation of Synaptic Activity

  • A. Ferrús
  • S. Llamazares
  • F. Gaunitz
Conference paper
Part of the NATO ASI Series book series (volume 19)

Abstract

When the genetic foundations of a cellular system are studied the most relevant question becomes, how to account for so much functional and structural diversity on the basis of so scant a genetic material. This problem seems to be more tangled the more sophisticated the cellular system is and often, the nervous system is used to illustrate a paramount example of biological complexity.

Keywords

Cellular System Elemental Operation Genetic Language Strict Genetic Control Larval Neuromuscular Junction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baker BS, Boyd JB, Carpenter A, Green MM, Nguyen TD, Ripoll P and Smith PD (1976) Genetic controls of meiotic recombination and somatic DNA metabolism in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 73:4140- 4144PubMedCrossRefGoogle Scholar
  2. 2.
    Baumann A, Krah-Jentgens I, Mueller R, Mueller-Holtkamp F, Seidel R, Kecskemethy N, Casai J, Ferrus A and Pongs, O. (1987) Molecular organization of the maternal effect region of the Shaker complex of Drosophila: Characterization of an I -channel transcript with homology to vertebrate NaA+-channel. EMBO J 6:Google Scholar
  3. 3.
    Bullock TH and Horridge GA (1965) Structure and function in the nervous system of invertebrates. Freeman. San FranciscoGoogle Scholar
  4. 4.
    Byers D, Davis RL and Kiger JA (1981) Defective cyclic AMP phosphodiesterase due to the dunce mutation of learning in Drosophila melanogaster. Nature 289: 79–81PubMedCrossRefGoogle Scholar
  5. 5.
    Cajal SR (1911) Histologie du système nerveux de l′homme et des vertebrés. Cons.Sup.Invest.Cient. MadridGoogle Scholar
  6. 6.
    Castellucci VF, Kandel ER, Schwartz JH, Wilson FD, Nairn AC and Greengard P (1980) Intracellular injection of the catalytic subunit of cyclic AMP-dependent protein kinase simulates facilitation of transmitter release underlying behavioral sensitization in Aplysia.Proc. Natl. Acad. Sci. USA. 77: 7492–7496CrossRefGoogle Scholar
  7. 7.
    Dudai Y (1985) Genes, enzymes and learning in Drosophila. TINS 8:18–21Google Scholar
  8. 8.
    Ferrús A (1979) Cell functions in morphogenesis. Clonal analysis of new morphogenetic mutations in Drosophila melanogaster. Dev. Biol. 68: 16–28PubMedCrossRefGoogle Scholar
  9. 9.
    Ferrus A, Tanouye MA, Pongs O and Llamazares S. The genetic organization of the Shaker region of Drosophila (manuscript in prep.)Google Scholar
  10. 10.
    Fischbach KF and Heisenberg M (1984) Neurogenetics and behaviour in insects. J exp. Biol. 112: 65–93Google Scholar
  11. 11.
    Ganetzky B and Wu CF (1982) Indirect suppression involving behavioral mutants with altered nerve excitability in Drosophila melanogaster. Genetics 100: 597–614PubMedGoogle Scholar
  12. 12.
    Goodman CS (1978) Isogenic grasshoppers: genetic variability in the morphology of identified neurons. J Comp. Neurol. 182: 681–706PubMedCrossRefGoogle Scholar
  13. 13.
    Goetz KG (1980) Visual guidance in Drosophila. In: “Development and neurobiology of Drosophila”. (O Siddiqui, P Babu, LM Hall and JC Hall eds.) Plenum Pub. Corp. New YorkGoogle Scholar
  14. 14.
    Heitler WJ, Goodman CS and Rowell CHF (1977) The effects of temperature on the threshold of identified neurons in the locust. J Comp. Physiol. Psychol. 117: 163–182.Google Scholar
  15. 15.
    Jan LY and Jan YN (1976) Properties of the larval neuromuscular junction in Drosophila melanogaster. J Physiol. 262: 189–214PubMedGoogle Scholar
  16. 16.
    Jan YN, Jan LY and Dennis MJ (1977) Two mutations of synaptic transmission in Drosophila. Proc. R. Soc. Lond. B. 198:87–108PubMedCrossRefGoogle Scholar
  17. 17.
    Kandel ER (1981) Calcium and the control of synaptic strength by learning. Nature 293: 697–700PubMedCrossRefGoogle Scholar
  18. 18.
    Knust E, Dietrich U, Tepass U, Bremer KA, Weigel D, Vassin H and Campos-Ortega JA (1987) EGF homologous sequences encoded in the genome of Drosophila melanogaster and their relation to neurogenic genes. EMBO J 6: 761–766PubMedGoogle Scholar
  19. 19.
    Lehmann R, Jimenez F, Dietrich U and Campos-Ortega JA (1983) On the phenotype and development of mutants of early neurogenesis in Drosophila melanogaster. Roux’s Arch. Dev. Biol. 193: 62–74Google Scholar
  20. 20.
    Levinthal F, Macagno E and Levinthal C (1976) Anatomy and development of identified cells in isogenic organisms. CSHQB XL: 321–331Google Scholar
  21. 21.
    Livingstone MS, Sziber PP and Quinn WG (1984) Loss of calcium/calmodulin responsiveness in adenylate cyclase of rutabaga, a Drosophila learning mutant. Cell 37: 205–215PubMedCrossRefGoogle Scholar
  22. 22.
    Luers H (1936) Shaker, eine erbliche Bewegungsstorung bei Drosophila funebris. Z. induktive Abstam. Vererbungs. 72: 119–126CrossRefGoogle Scholar
  23. 23.
    Muller HJ (1932) Further studies on the nature and causes of gene mutations. Proc. Sixth Intl. Cong. Genetics 1: 213–255Google Scholar
  24. 24.
    Nöda M, Takahashi H, Tanabe T, Toyosato M, Kikiyotani S, Furutani Y, Hirose T, Takashima H, Inayama S, Miyata T, and Numa S.(1983) Structural homology of Torpedo californica acetylcholine receptor subunits. Nature (Lond.) 302: 528–532CrossRefGoogle Scholar
  25. 25.
    Ohno S. (1970) Evolution by gene duplication. Springer.Berlin. Heidelberg. New YorkGoogle Scholar
  26. 26.
    Peters A. and Jones EG. (eds.) (1984) Cerebral cortex. Plenum Press. New York and LondonGoogle Scholar
  27. 27.
    Prigogine I. (1955) Introduction to thermodynamics of irreversible processes. Wiley. New YorkGoogle Scholar
  28. 28.
    Quinn WG and Gould JL (1979) Nerves and genes. Nature (London) 278: 19–23CrossRefGoogle Scholar
  29. 29.
    Salkoff L and Wyman R (1981) Genetic modification of potassium channels in Drosophila Shaker mutant. Nature 293: 228–230PubMedCrossRefGoogle Scholar
  30. 30.
    Stent GS (1980) The genetic approach to developmental neurobiology. TINS 3: 49–51Google Scholar
  31. 31.
    Strausfeld NJ (1976) Atlas of an insect brain. Springer. Berlin. Heidelberg. New YorkGoogle Scholar
  32. 32.
    Tanouye MA, Ferrus A and Fujita SC (1981) Abnormal action potentials associated with the Shaker complex locus of Drosophila. Proc. Natl. Acad. Sci. USA 78: 6548–6552PubMedCrossRefGoogle Scholar
  33. 33.
    Wharton KA, Johansen KM, Xu T and Artavanis-Tsakonas S (1985) Nucleotide sequence from the neurogenetic locus Notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 43: 567–581PubMedCrossRefGoogle Scholar
  34. 34.
    Wu CF, Ganetzky B, Jan LY, Jan YN and Benzer S (1978) A Drosophila mutant with a temperature-sensitive block in nerve conduction. Proc. Natl. Acad. Sci.USA.75: 4047–4051PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • A. Ferrús
    • 1
  • S. Llamazares
    • 1
  • F. Gaunitz
    • 1
  1. 1.Instituto Cajal. C.S.I.CMadridSpain

Personalised recommendations