Postsynaptic Signal Transduction in Neuroblastoma and Ganglion Cells: Receptor-Mediated Control of K-Currents

  • D. A. Brown
  • H. Higashida
  • P. R. Adams
  • N. V. Marrion
Conference paper
Part of the NATO ASI Series book series (volume 19)


Communication within the nervous system is governed by the frequency and pattern of action potential discharges, and hence by variations in ionic current flow across the outer cell membrane. Thus, if a chemical neurotransmitter is to change the electrical activity of a recipient neurone, its biochemical action on the receptor haB to be transduced into a change in ionic current flow.


Muscarinic Agonist Inositol Trisphosphate Action Potential Discharge Vertebrate Neurone Glioma Hybrid Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grenningloh, G., Rienitz, A., Schmitt, B., Methfessel, C., Zensen, M., Bayreuther, K., Grundelfinger, E.O. & Betz, H. (1987) The Strychnine-Binding Subunit of The Glycine Receptor Shows Homology With Nicotinic Acetylcholine Receptors. Nature 328, 215–200.PubMedCrossRefGoogle Scholar
  2. 2.
    Schofield, P.R., Darlison, M.G., Fujita, N., Burt, D.R., Stephenson, F.A., Rodriguez, H., Rhee, L.M., Ramachandran, J., Realb, V., Glencorse, T.A., Seeburg, P.H. & Barnard, E.A. (1987) Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family. Nature 328, 221–227.PubMedCrossRefGoogle Scholar
  3. 3.
    Hall, Z.W. (1987) Three of a Kind: The β-Adrenergic Receptor, The muscarinic acetylcholine receptor, and rhodopsin. Trends In Neurosci. 10, 99–101.CrossRefGoogle Scholar
  4. 4.
    Dolphin, A. (1987) Nucleotide binding proteins in signal transduction and disease. Trends in Neurosci. 10, 53–57.CrossRefGoogle Scholar
  5. 5.
    Berridge, M.J. & Irvine, R.F. (1984) Inositol Trisphosphate, a novel second messenger in cellular signal transduction. Nature 312, 315–321.PubMedCrossRefGoogle Scholar
  6. 6.
    Kuno, M. & Gardner, P. (1987) Ion channels activated by inositol 1,4,5–trisphosphate in plasma membrane of human t-lymphocytes. Nature 326, 301–304.PubMedCrossRefGoogle Scholar
  7. 7.
    Batty, I.R., Nahorski, S.R. & Irvine, R.F. (1985) Rapid formation of inositol 1,3,4,5–tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices. Biochem. J. 232, 211–215.PubMedGoogle Scholar
  8. 8.
    Nishizuka, Y. (1986) Studies and perspectives of protein kinase c. Science 283, 305–312.CrossRefGoogle Scholar
  9. 9.
    Kaczmarek, L. (1987) The role of protein kinase c in the regulation of ion channels and neurotransmitter release. Trends In Neurosci., 10, 30–33.CrossRefGoogle Scholar
  10. 10.
    Yano, K., Higashida, H., Inoue, R. & Nozawa, Y. (1984) Bradykinin-induced rapid breakdown of phosphatidyl inositol 4,5-bisphosphate in neuroblastoma x glioma hybrid ng108–15 cells. J. Biol. Chew. 259, 10201–10207.Google Scholar
  11. 11.
    Yano, K., Higashida, H., Hattori, H. & Nozawa, Y. (1985) Bradykinin-induced transient accumulation of inositol trisphosphate in neuron-like cell line ng1g8–15 cells. Febs Lett. 181, 403–406.PubMedCrossRefGoogle Scholar
  12. 12.
    Grandt, R., Greiner, C., Zubin, P. & Jakobs, K.H. (1986) Bradykinin stimulates gtp hydrolysis in ng108–15 membranes by a high-affinity, pertussis toxin-insensitive gtpase. Febs Lett. 196, 279–283.PubMedCrossRefGoogle Scholar
  13. 13.
    Reiser, G. & Hamprecht, B. (1985) Bradykinin Causes A Transient Rise Of Intracellular Ca2+-Activity In Cultured Neuronal Cells. Pfl’Ug. Arch. 405, 260–264.CrossRefGoogle Scholar
  14. 14.
    Osugi, T., Uchida, S., Imaizumi, T. & Yoshida, H. (1986) bradykinin-induced intracellular caa+ elevation in neuroblastoma x glioma hybrid ng108–15 cells: relationship to the action of inositol phospholipid metabolites. Brain Res. 379, 84–89.PubMedCrossRefGoogle Scholar
  15. 15.
    Jean, T. & Klee, C.B. (1986) Calcium modulation of inositol 1,4,5–trisphosphate-induced calcium release from neuroblastoma x glioma hybrid (ng108–15) microsomes. J. Biol. Chew., 261, 16414–16420.Google Scholar
  16. 16.
    Reiser, G. & Hamprecht, B. (1982) Bradykinin induceshyperpolarizations in rat glioma cells and in neuroblastoma x glioma hybrid cells. Brain Res. 239, 191–199.PubMedCrossRefGoogle Scholar
  17. 17.
    Higashida, H. & Brown, D.A. (1986) Two polyphosphatidylinositide metabolites control two k+ currents in a neuronal cell. Nature 323, 333–335.PubMedCrossRefGoogle Scholar
  18. 18.
    Brown, D.A. & Adams, P.R. (1980) Muscarinic suppression of a novel voltage-sensitive k+ current in a vertebrate neurone. Nature 283, 673–676.PubMedCrossRefGoogle Scholar
  19. 19.
    Cook, N.S. & Haylett, D.G. (1985) Effects of apamin, quinine and neuromuscular blockers on calcium-activated potassium channels in guinea-pig hepatocytes. J. Physiol. 358, 373–394.PubMedGoogle Scholar
  20. 20.
    Brown, D.A., Furuya, K. & Higashida, H. (1987) K-Channels in ng108–15 rodent neuroblastoma x glioma cells activated by intracellular injections of inositol-l,4,5–trisphosphate (ip3). Jphysiol. (In Press).Google Scholar
  21. 21.
    Marty, A. (1983) Ca2+-Dependent k+-channels with large unitaryconductance. Trends In Neurosci. 6, 262–265.CrossRefGoogle Scholar
  22. 22.
    Higashida, H. Brown, D.A. (1986) Membrane Current Responses To Intracellular Injections Of Inositol 1,3,4,5–Tetrakisphosphate And Inositol 1,3,4–Trisphosphate In Ng108–15 Cells. Febs Lett. 208, 283–286.PubMedCrossRefGoogle Scholar
  23. 23.
    Tertoolen, L.G.J., Tilly, B.C., Irvine, R.F. & Moolenaar, W.H. (1987) Electrophysiological responses to bradykinin and microinjected inositol polyphosphates in neuroblastoma cells. Febs Lett. 214, 365–369.PubMedCrossRefGoogle Scholar
  24. 24.
    Higashida, H. & Brown, D.A. (1987) Bradykinin inhibits potassium (m)current in nie-115 neuroblastoma cells. Febs Lett, (In Press).Google Scholar
  25. 25.
    Brown, D.A. & Higashida, H. (1987) A Note on voltage-and ca-activated k-currents in mouse neuroblastoma x rat glioma hybrid cells. J. Physiol. (In Press).Google Scholar
  26. 26.
    Marrion, N.V. (1987) Probable role of a gtp-binding protein in mediating m-current inhibition by muscarine in rat sympathetic neurones. J. Physiol. (Submitted).Google Scholar
  27. 27.
    Brown, D.A. & Adams, P.R. (1987) effects of phorbol dibutyrate on m-currents and m-current inhibition in bullfrog sympathetic neurons. cell molec. Neurobiol. (In Press).Google Scholar
  28. 28.
    Pennefather, P., Lancaster, B., Adams, P.R. & Nicoll, R.A. (1985) Two distinct ca-dependent k-currents in bullfrog sympathetic ganglion cells. Proc. Natl. Acad. Sci. 82, 3040–3044.PubMedCrossRefGoogle Scholar
  29. 29.
    Brown, D.A. & Higashida, H. (1988) Inositol-l,4,5–trisphosphate and diacylglycerol mimic bradykinin-effects on mouse neuroblastoma x rat glioma hybrid cells. J. Physiol, (In Press).Google Scholar
  30. 30.
    Malenka, R.C., Madison, D.V., Andrade, R. & Nicoll, R.A. (1986) Phorbol esters mimic some cholinergic actions in hippocampal pyramidal neurons. J. Neurosci. 6, 475–480.PubMedGoogle Scholar
  31. 31.
    Bone, E.A., Fretten, P., Palmer, S., Kirk, C.J. & Michell, R.H. (1984) Rapid accumulation of inositol phosphates in isolated rat superior cervical ganglia exposed to v!-vasopressin and muscarinic cholinergic stimuli. Biochem. J. 221, 803–811.Google Scholar
  32. 32.
    Patterson, B.A. & Volle, R.L. (1984) Muscarinic receptors and [3h] inositol incorporation in a rat sympethatic ganglion. J. Aut. Nerv. Syst. 10, 69–72.CrossRefGoogle Scholar
  33. 33.
    Horwitz, J., Tsymbalov, S. & Periman, R.L. (1984) Muscarine increases tyrosine 3–monoxygenase activity and phospholipid metabolism in the superior cervical ganglion of the rat. J. Pharmac. Exper. Ther. 229, 577–582.Google Scholar
  34. 34.
    Harden, T.R. et al. (1986) Characteristics of two biochemical responses to stimulation of muscarinic cholinergic receptors. Trends In Pharmacol. Sci. (Suppl). 14–18.Google Scholar
  35. 35.
    Majerus, P.W. et al. (1986) The Metabolism Of Phosphoinositide-Derived Messenger Molecules. Science, 234, 1519–1526.PubMedCrossRefGoogle Scholar
  36. 36.
    Dufy, B., Jaken, S. & Barker, J.L. (1987) Ca2+-Dependent Pkc-Activation Mimicks Delayed Effects Of Trh On Clonal Pituitary Cell Excitability. Endocrinology (In Press).Google Scholar
  37. 37.
    Higashida, H. (1988) Acetylcholine Release Induced By Bradykinin, Inositol 1,4,5–Trisphosphate And Phorbol Dibutyrate In Neuroblastoma X Glioma Hybrid Cells. J. Physiol, (In Press)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • D. A. Brown
    • 1
  • H. Higashida
    • 2
  • P. R. Adams
    • 3
  • N. V. Marrion
    • 4
  1. 1.MRC Neuropharmacology Research Group, Department of PharmacologyUniversity College LondonLondonUK
  2. 2.Department of Pharmacology, Cancer Research InstituteKanazaura UniversityKanazaura 920Japan
  3. 3.Department of Neurobiology and BehaviorState University of New YorkStony BrookUSA
  4. 4.Department of Pharmacology, School of PharmacyMRC Neuropharmacology Research GroupLondonUK

Personalised recommendations