Skip to main content

Initiation of DNA Replication by Primer Proteins: Bacteriophage ø29 and Its Relatives

  • Conference paper
Book cover The Molecular Biology of Bacterial Virus Systems

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 136))

Abstract

The fact that none of the known DNA polymerases is able to initiate DNA chains but only to elongate from a free 3′-OH group raises the problem of how replication is initiated, both at the replication origin and on Okazaki fragments. It was first shown by A. Kornberg et al. that a general mechanism to initiate replication is through the formation of an RNA primer catalyzed by RNA polymerases or by a new class of enzymes, the primases (Kornberg 1980). This mechanism, which can be used in the case of circular DNA molecules or linear DNAs that circularize or form concatemers, cannot be used at the ends of linear DNAs since the RNA primer is removed from the DNA chain, and there is no way of filling the gap resulting at the 5′-ends of the newly synthesized DNA chain. In some cases linear DNA molecules contain a palindromic nucleotide sequence at the 3′-end that allows the formation of a hairpin structure which provides the needed free 3′-OH group for elongation. This mechanism, first proposed by Cavalier-Smith (1974) for eukaryotic DNA replication, was shown to take place in several systems (Kornberg 1980, 1982). Another mechanism to initiate replication consists in the specific nicking of one of the strands of a circular double-stranded DNA, producing a 3′-OH group available for elongation (Kornberg 1980). In the case of the Bacillus subtilis phage ø 29, which contains a linear, double-stranded DNA of molecular weight 11.8 × 106 (Sogo et al. 1979), the initiation of replication cannot take place by any of the indicated mechanisms. In this review I will describe the existence of a protein covalently linked to the ends of ø 29 DNA as well as to the DNA ends of phages related to ø 29 and its role in the initiation of replication by a protein-priming mechanism (Salas 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bamford DH, Mindich L (1984) Characterization of the DNA-protein complex at the termini of the bacteriophage PRDI genome. J Virol 50: 309–315

    PubMed  CAS  Google Scholar 

  • Blanco L, Salas M (1984) Characterization and purification of a phage ø 29-encoded DNA polymerase required for the initiation of replication. Proc Natl Acad Sci USA 81: 5325–5329

    Article  PubMed  CAS  Google Scholar 

  • Blanco L, Salas M (1985 a) Characterization of a 3’ -. 5’ exonuclease activity in the phage ø 29-encoded DNA polymerase. Nucleic Acids Res 13: 1239–1249

    Article  PubMed  CAS  Google Scholar 

  • Blanco L, Salas M (1985 b) Replication of phage ø 29 DNA with purified terminal protein and DNA polymerase: synthesis of full-length ø 29 DNA. Proc Natl Acad Sci USA 82: 6404–6408

    Article  PubMed  CAS  Google Scholar 

  • Blanco L, Salas M (1986) Effect of aphidicolin and nucleotide analogs on the phage ø 29 DNA polymerase. Virology, 153: 179–187

    Article  PubMed  CAS  Google Scholar 

  • Blanco L, Garcia JA, Peiialva MA, Salas M (1983) Factors involved in the initiation of phage ø 29 DNA replication in vitro: requirement of the gene 2 product for the formation of the protein p3-dAMP complex. Nucleic Acids Res 11: 1309–1323

    Article  PubMed  CAS  Google Scholar 

  • Blanco L, Garcia JA, Salas M (1984) Cloning and expression of gene 2, required for the proteinprimed initiation of the Bacillus subtilis phage ø 29 DNA replication. Gene 29: 33–40

    Article  PubMed  CAS  Google Scholar 

  • Blanco L, Gutiérrez J, Lâzaro JM, Bernad A, Salas M (1986) Replication of phage ø 29 DNA in vitro: role of the viral protein p6 in initiation and elongation. Nucleic Acids Res 14: 4923–4937

    Article  PubMed  CAS  Google Scholar 

  • Carrascosa JL, Camacho A, Moreno F, Jiménez F, Mellado RP, Viíïuela E, Salas M (1976) Bacillus subtilis phage ø 29: characterization of gene products and functions. Eur J Biochem 66: 229–241

    Google Scholar 

  • Cavalier-Smith T (1974) Palindromic base sequences and replication of eukaryotic chromosome ends. Nature 250: 467–470

    Article  PubMed  CAS  Google Scholar 

  • Daubert SD, Bruening G (1984) Detection of genome-linked proteins of plants and animal viruses. Methods Virol 8: 347–379

    CAS  Google Scholar 

  • Escarmis C, Salas M (1981) Nucleotide sequence at the termini of the DNA of Bacillus subtilis phage ø 29. Proc Natl Acad Sci USA 78: 1446–1450

    Article  PubMed  CAS  Google Scholar 

  • Escarmis C, Salas M (1982) Nucleotide sequence of the early genes 3 and 4 of bacteriophage ø 29. Nucleic Acids Res 10: 5785–5798

    Article  PubMed  CAS  Google Scholar 

  • Fuèik V, Grunow E, Grünnerovâ H, Hostomskÿ Z, Zadrazyl S (1980) New members of Bacillus subtilis phage group containing a protein link in their circular DNA. Zadrazyl S, Sponar J, (eds) In DNA: recombination, interactions and repair. Pergamon, New York, pp 111–118

    Google Scholar 

  • Garcia E, Gómez A, Ronda C, Escarmis C, Lopez R (1983a) Pneumococcal bacteriophage Cp-1 contains a protein tightly bound to the 5’ termini of its DNA. Virology 128: 92–104

    Article  PubMed  CAS  Google Scholar 

  • Garcia JA, Pastrana R, Prieto I, Salas M (1983 b) Cloning and expression in Escherichia coli of the gene coding for the protein linked to the ends of Bacillus subtilis phage q5 29 DNA. Gene 21: 65–76

    Google Scholar 

  • Garcia JA, Peíialva MA, Blanco L, Salas M (1984) Template requirements for the initiation of phage ø 29 DNA replication in vitro. Proc Natl Acad Sci USA 81: 80–84

    Article  PubMed  CAS  Google Scholar 

  • Garcia P, Hermoso JM, Garcia JA, Garcia E, López E, Salas M (1986) Formation of a covalent complex between the terminal protein of pneumococcal bacteriophage Cp-1 and 5’-dAMP. J Virol 58: 31–35

    PubMed  CAS  Google Scholar 

  • Geiduschek EP, Ito J (1982) Regulatory mechanisms in the development of lytic bacteriophages in Bacillus subtilis. In: Dubnau DA (ed) The Molecular Biology of the Bacilli. Academic, London, 1: 203–245

    CAS  Google Scholar 

  • Gutiérrez J, Garcia JA, Blanco L, Salas M (1986a) Cloning and template activity of the origins of replication of phage ø 29 DNA. Gene 43: 1–11

    Article  PubMed  Google Scholar 

  • Gutiérrez J, Vinós J, Prieto I, Méndez E, Hermoso JM, Salas M (1986b) Signals in the DNA-Terminal protein template for the initiation of phage ø 29 DNA replication. Virology 155: 474–483

    Article  PubMed  Google Scholar 

  • Hagen EW, Reilly BE, Tosi ME, Anderson DL (1976) Analysis of gene function of bacteriophage ø 29 of Bacillus subtilis: identification of cistrons essential for viral assembly. J Virol 19: 501–517

    PubMed  CAS  Google Scholar 

  • Harding NE, Ito J (1980) DNA replication of bacteriophage 0 29: characterization of the intermediates and location of the termini of replication. Virology 104: 323–338

    Article  PubMed  CAS  Google Scholar 

  • Henney DJ, Hoch JA (1980) The Bacillus subtilis chromosome. Microbiol Rev 44: 57–82

    Google Scholar 

  • Hermoso JM, Salas M (1980) Protein p3 is linked to the DNA of phage ø 29 through a phosphoester bond between serine and 5’-dAMP. Proc Natl Acad Sci USA 77: 6425–6428

    Article  PubMed  CAS  Google Scholar 

  • Hermoso JM, Méndez E, Soriano F, Salas M (1985) Location of the serine residue involved in the linkage between the terminal protein and the DNA of ø 29. Nucleic Acids Res 13: 7715–7728

    Article  PubMed  CAS  Google Scholar 

  • Hirochika H, Sakaguchi R (1982) Analysis of linear plasmids isolated from Streptomyces: association of protein with the ends of the plasmid DNA. Plasmid 7: 59–65

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa H (1972) Transfecting deoxyribonucleic acid of Bacillus bacteriophage ø 29. Proc Natl Acad Sci USA 69: 1555–1559

    Article  PubMed  CAS  Google Scholar 

  • Huberman JA (1981) New views of the biochemistry of eukaryotic DNA replication revealed by aphidicolin, an unusual inhibitor of DNA polymerase a. Cell 23: 647–648

    Article  PubMed  CAS  Google Scholar 

  • Inciarte MR, Salas M, Sogo JM (1980) Structure of replicating DNA molecules of Bacillus subtilis bacteriophage ø 29. J Virol 34: 187–199

    PubMed  CAS  Google Scholar 

  • Ito J (1978) Bacteriophage 029 terminal protein: its association with the 5’ termini of the ø29 genome. J Virol 28: 895–904

    PubMed  CAS  Google Scholar 

  • Kemble RJ, Thompson RD (1982) S1 and S2, the linear mitochondrial DNAs present in a male sterile line of maize, possess terminally attached proteins. Nucleic Acids Res 10: 8181–8190

    Article  PubMed  CAS  Google Scholar 

  • Khan NN, Wright GE, Dudycz LW, Brown NC (1984) Butylphenyl dGTP: a selective and potent inhibitor of mammalian DNA polymerase alpha. Nucleic Acids Res 12: 3695–3706

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi Y, Hirai K, Hishinuma F (1984) The yeast linear DNA killer plasmids, pGLK1 and pGLK2, possess terminally attached proteins. Nucleic Acids Res 12: 5685–5692

    Article  PubMed  CAS  Google Scholar 

  • Kornberg A (1980) DNA replication. Freeman, San Francisco

    Google Scholar 

  • Kornberg A (1982) DNA replication supplement. Freeman, San Francisco

    Google Scholar 

  • Mackenzie JM, Neville MM, Wright JE, Brown NE (1973) Hydroxyphenylazopyrimidine: characterization of the active forms and their inhibitory action on a DNA polymerase from Bacillus subtilis. Proc Nati Acad Sci USA 70: 512–516

    Article  CAS  Google Scholar 

  • Matsumoto K, Saito T, Hirokawa H (1983) In vitro initiation of bacteriophage q1 29 and M2 DNA replication: genes required for formation of a complex between the terminal protein and 5’dAMP. Mol Gen Genet 191: 26–30

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto K, Saito T, Kim CI, Ando T, Hirokawa H (1984) Bacteriophage ø 29 DNA replication in vitro: participation of the terminal protein and the gene 2 product in elongation. Mol Gen Genet 196: 381–386

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto K, Kim CI, Urano S, Ohashi H, Hirokawa H (1986) Aphidicolin-resistant mutants of bacteriophage ø 29: genetic evidence for altered DNA polymerase. Virology 152: 32–38

    Article  PubMed  CAS  Google Scholar 

  • Mellado RP, Salas M (1982) High level synthesis in Escherichia coli of the Bacillus subtilis phage ø 29 proteins p3 and p4 under the control of phage lambda PL promoter. Nucleic Acids Res 10: 5773–5784

    Article  PubMed  CAS  Google Scholar 

  • Mellado RP, Salas M (1983) Initiation of phage ø 29 DNA replication by the terminal protein modified at the carboxyl end. Nucleic Acids Res 11: 7397–7407

    Article  PubMed  CAS  Google Scholar 

  • Mellado RP, Pefialva MA, Inciarte MR, Salas M (1980) The protein covalently linked to the 5’ Initiation of DNA Replication by Primer Proteins: Bacteriophage ø 29 and Its Relatives 87 termini of the DNA of Bacillus subtilis phage ø 29 is involved in the initiation of DNA replication. Virology 104: 84–96

    Article  PubMed  CAS  Google Scholar 

  • Moreno F, Camacho A, Vinuela E, Salas M (1974) Suppressor-sensitive mutants and genetic map of Bacillus subtilis bacteriophage ø 29. Virology 62: 1–16

    Article  PubMed  CAS  Google Scholar 

  • Morrow CD, Hocko J, Navab M, Dasgupta A (1984) ATP is required for initiation of poliovirus RNA synthesis in vitro: demonstration of tyrosine-phosphate linkage between in vitro-synthesized RNA and genome-linked protein. J Virol 50: 515–523

    PubMed  CAS  Google Scholar 

  • Orlin J, Vinuela E, Salas M, Vasquez C (1971) DNA-protein complex in circular DNA from phage ø 29. Nature New Biol 234: 275–277

    Article  Google Scholar 

  • Paces V, Vlcek C, Urbânek P, Hostomskp Z (1985) Nucleotide sequence of the major early region of Bacillus subtilis phage PZA, a close relative of ø 29. Gene 38: 45–46

    Article  PubMed  CAS  Google Scholar 

  • Pastrana R, Lâzaro JM, Blanco L, Garcia JA, Méndez E, Salas M (1985) Overproduction and purification of protein p6 of Bacillus subtilis phage ø 29: role in the initiation of DNA replication. Nucleic Acids Res 13: 3083–3100

    Article  PubMed  CAS  Google Scholar 

  • Penalva MA, Salas M (1982) Initiation of phage ø29 DNA replication in vitro: formation of a covalent complex between the terminal protein, p3, and 5’-dAMP. Proc Natl Acad Sci USA 79: 5522–5526

    Article  PubMed  CAS  Google Scholar 

  • Prieto I, Lâzaro JM, Garcia JA, Hermoso JM, Salas M (1984) Purification in a functional form of the terminal protein of Bacillus subtilis phage ø29. Proc Natl Acad Sci USA 81: 1639–1643

    Article  PubMed  CAS  Google Scholar 

  • Rekosh DMK, Russell WC, Bellett AJD, Robinson AJ (1977) Identification of a protein linked to the ends of adenovirus DNA. Cell 11: 283–295

    Article  PubMed  CAS  Google Scholar 

  • Salas M (1983) A new mechanism for the initiation of replication of ø 29 and adenovirus DNA: priming by the terminal protein. Curr Top Microbiol Immunol 109: 89–106

    Article  CAS  Google Scholar 

  • Salas M, Mellado RP, Vinuela E, Sogo JM (1978) Characterization of a protein covalently linked to the 5’ termini of the DNA of Bacillus subtilis phage ø29. J Mol Biol 119: 269–291

    Article  PubMed  CAS  Google Scholar 

  • Salas M, Prieto I, Gutiérrez J, Blanco L, Zaballos A, Lâzaro JM, Martin G, Bernad A, Garmendia C, Mellado RP, Escarmis C, Hermoso JM (1987) Replication of phage ø 29 DNA primed by the terminal protein. In: Kelly T, McMacken R (eds) Mechanisms of DNA replication and recombination. UCLA symposia on molecular and cellular biology, new series, vol 47. Liss, New York, pp 215–225

    Google Scholar 

  • Shih MF, Watabe K, Ito J (1982) In vitro complex formation between bacteriophage ø 29 terminal protein and deoxynucleotide. Biochem Biophys Res Commun 105: 1031–1036

    Article  PubMed  CAS  Google Scholar 

  • Shih MF, Watabe K, Yoshikawa H, Ito J (1984) Antibodies specific for the ø 29 terminal protein inhibit the initiation of DNA replication in vitro. Virology 133: 56–64

    Article  PubMed  CAS  Google Scholar 

  • Sogo JM, Inciarte MR, Corral J. Vinuela E, Salas M (1979) RNA polymerase binding sites and transcription map of the DNA of Bacillus subtilis phage ø 29. J Mol Biol 127: 411–436

    Article  PubMed  CAS  Google Scholar 

  • Sogo JM, Garcia JA, Penalva MA, Salas M (1982) Structure of protein-containing replicative intermediates of Bacillus subtilis phage ø 29 DNA. Virology 116: 1–18

    Article  PubMed  CAS  Google Scholar 

  • Stillman BW (1983) The replication of adenovirus DNA with purified proteins. Cell 35: 7–9

    Article  PubMed  CAS  Google Scholar 

  • Talavera A, Jiménez F, Salas M, Vinuela E (1971) Temperature-sensitive mutants of bacteriophage ø 29. Virology 46: 586–595

    Article  PubMed  CAS  Google Scholar 

  • Talavera A, Salas M, Vinuela E (1972) Temperature-sensitive mutants affected in DNA synthesis in phage ø 29 of Bacillus subtilis. Eur J Biochem 31: 367–371

    Article  PubMed  CAS  Google Scholar 

  • Vartapetian AB, Koonin EV, Agol VI, Bogdanov AA (1984) Encephalomyocarditis virus RNA synthesis in vitro is protein-primed. EMBO J 3: 2593–2598

    PubMed  CAS  Google Scholar 

  • Watabe K, Ito J (1983) A novel DNA polymerase induced by Bacillus subtilis phage ø 29. Nucleic Acids Res 11: 8333–8342

    Article  PubMed  CAS  Google Scholar 

  • Watabe K, Shih MF, Sugino A, Ito J (1982) In vitro replication of bacteriophage ø 29 DNA. Proc Natl Acad Sci USA 79: 5245–5248

    Article  PubMed  CAS  Google Scholar 

  • Watabe K, Shih MF, Ito J (1983) Protein-primed initiation of phage ø 29 DNA replication. Proc Natl Acad Sci USA 80: 4248–4252

    Article  PubMed  CAS  Google Scholar 

  • Watabe K, Leusch M, Ito J (1984a) Replication of bacteriophage ø 29 DNA in vitro: the roles of terminal protein and DNA polymerase. Proc Natl Acad Sci USA 81: 5374–5378

    Article  PubMed  CAS  Google Scholar 

  • Watabe K, Leusch M, Ito J (1984b) A 3’ to 5’ exonuclease activity is associated with phage ø 29 DNA polymerase. Biochem Biophys Res Commun 123: 1019–1026

    Article  PubMed  CAS  Google Scholar 

  • Yanofsky S, Kawamura F, Ito J (1976) Thermolabile transfecting DNA from temperature-sensitive mutant of phage ø 29. Nature 259: 60–63

    Article  PubMed  CAS  Google Scholar 

  • Yehle CO (1978) Genome-linked protein associated with the 5’ termini of bacteriophage ø 29 DNA. J Virol 27: 776–783

    PubMed  CAS  Google Scholar 

  • Yoshikawa H, Ito J (1981) Terminal proteins and short inverted terminal repeats of the small Bacillus bacteriophage genomes. Proc Natl Acad Sci USA 78: 2596–2600

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa H, Ito J (1982) Nucleotide sequence of the major early region of bacteriophage ø 29. Gene 17: 323–335

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa H, Friedmann T, Ito J (1981) Nucleotide sequences at the termini of ø 29 DNA. Proc Natl Acad Sci USA 78: 1336–1340

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa H, Garvey KJ, Ito J (1985) Nucleotide sequence analysis of DNA replication origins of the small Bacillus bacteriophages: evolutionary relationships. Gene 37: 125–130

    Article  PubMed  CAS  Google Scholar 

  • Zaballos A, Salas M, Mellado RP (1986) Initiation of phage ø 29 DNA replication by deletion mutants at the carboxyl end of the terminal protein. Gene 43: 103–110

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Salas, M. (1988). Initiation of DNA Replication by Primer Proteins: Bacteriophage ø29 and Its Relatives. In: Hobom, G., Rott, R. (eds) The Molecular Biology of Bacterial Virus Systems. Current Topics in Microbiology and Immunology, vol 136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73115-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73115-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73117-4

  • Online ISBN: 978-3-642-73115-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics