Advertisement

Single-Stranded DNA Phage Origins

  • P. D. Baas
  • H. S. Jansz
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 136)

Abstract

Since the rediscovery of bacteriophage ø X174 in the 1950 s by Robert Sinsheimer (1959), the single-stranded DNA phages have been widely used as model systems in molecular biology. ø X174 can be considered as their “ godfather. ” The single-stranded DNA bacteriophages are divided into two classes based on the morphology of their representatives, either isometric (icosahedral) or filamentous. The isometric phages follow the conventional infection cycle of adsorption, reproduction, and release of progeny particles after lysis of their host, usually Escherichia coli C. The other class, the filamentous phages, do not lyse or kill their host cell. The infected cell continues to grow and to divide, while the progeny virions are formed and extruded through the cell membrane in a continuous fashion. Both classes of single-stranded DNA phages contain a circular genome.

Keywords

Origin Region Protein Cleavage Site Viral Strand X174 Gene Protein Recognition Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abarzua P, Marians KJ (1984) Enzymatic techniques for the isolation of random single base substitutions in vitro at high frequency. Proc Natl Acad Sci USA 81: 2030–2034PubMedCrossRefGoogle Scholar
  2. Abarzua P, Soeller W, Marians KJ (1984) Mutational analysis of primosome assembly sites: I. Distinct classes of mutants in the Escherichia coli factor Y DNA effector sequences. J Biol Chem 259: 14286–14292PubMedGoogle Scholar
  3. Allison DP, Ganesan AJ, Olson AC, Snyder CM, Mitra S (1977) Electron microscopic studies of bacteriophage MI3 DNA replication. J Virol 24: 673–684PubMedGoogle Scholar
  4. Aoyama A, Hayashi M (1985) Effects of genome size on bacteriophage øX174 DNA packaging in vitro. J Biol Chem 260: 11033–11038PubMedGoogle Scholar
  5. Aoyama A, Hamatake RK, Hayashi M (1983) In vitro synthesis of bacteriophage øX174 by purified components. Proc Natl Acad Sci USA 80:4195–4199PubMedCrossRefGoogle Scholar
  6. Arai K, Kornberg A (1981) Unique primed start of gX174 DNA replication and mobility of the primosome in a direction opposite chain synthesis. Proc Natl Acad Sci USA 78: 69–73PubMedCrossRefGoogle Scholar
  7. Arai K, Low RL, Kornberg A (1981) Movement and site selection for priming by the primosome in phage øX174 DNA replication. Proc Natl Acad Sci USA 78: 707–711PubMedCrossRefGoogle Scholar
  8. Baas PD (1985) DNA replication of single-stranded Escherichia coli DNA phages. Biochim Biophys Acta 825: 111–139PubMedGoogle Scholar
  9. Baas PD (1987) Mutational analysis of the bacteriophage X174 replication origin. J Mol Biol Baas PD, Jansz HS (1972) gX174 replicative form DNA replication, origin and direction. J Mol Biol 63: 569–576Google Scholar
  10. Baas PD, Jansz HS, Sinsheimer RL (1976) Bacteriophage X174 DNA synthesis in a replication deficient host. Determination of the origin of ¢X DNA replication. J Mol Biol 102: 633–656Google Scholar
  11. Baas PD, Teertstra WR, Jansz HS (1978) Bacteriophage X174 RF DNA replication in vivo: a biochemical study. J Mol Biol 125: 167–185PubMedCrossRefGoogle Scholar
  12. Baas PD, Teertstra WR, Van Mansfeld ADM, Jansz HS, Van der Marel GA, Veeneman GH, Van Boom JH (1981 a) Construction of viable and lethal mutations in the origin of bacteriophage X174 using synthetic oligodeoxyribonucleotides. J Mol Biol 152: 615–639Google Scholar
  13. Baas PD, Heidekamp F, Van Mansfeld ADM, Jansz HS, Van der Marel GA, Veeneman GH, Van Boom JH ( 1981 b) Essential features of the origin of bacteriophage øX174 RF DNA replication. In: Ray DS, Fox CF (eds) The initiation of DNA replication. Academic, New York, pp 195–209Google Scholar
  14. Beck E, Zink B (1981) Nucleotide sequence and genome organization of filamentous bacteriophage fl and fd. Gene 16: 35–58PubMedCrossRefGoogle Scholar
  15. Beck E, Sommer R, Auerswald EA, Kurz C, Zink B, Osterburg G, Schaller H, Sugino K, Sugisaki H, Okamoto T, Takanami M (1978) Nucleotide sequence of bacteriophage fd DNA. Nucleic Acids Res 5: 4495–4503PubMedCrossRefGoogle Scholar
  16. Benbow RM, Zuccarelli AJ, Sinsheimer RL (1974) A role for single-strand breaks in bacteriophage ch X174 genetic recombination. J Mol Biol 88: 629–651PubMedCrossRefGoogle Scholar
  17. Benz EW Jr, Reinberg D, Vicuna R, Hurwitz J (1980 a) Initiation of DNA replication by the dnaG protein. J Biol Chem 255: 1096–1106Google Scholar
  18. Benz EW Jr, Sims J, Dressler D, Hurwitz J (1980b) Tertiary structure is involved in the initiation of DNA synthesis by the dnaG protein. In: Alberts B, Fox CF (eds) Mechanistic studies of DNA replication and genetic recombination. Academic, New York, pp 279–291Google Scholar
  19. Boeke JD, Vovis GF, Zinder ND (1979) Insertion mutant of bacteriophage fl sensitive to Eco RI. Proc Natl Acad Sci USA 76: 2699–2702PubMedCrossRefGoogle Scholar
  20. Bouché JP, Zechel K, Kornberg A (1975) dnaG gene product, a rifampicin-resistant RNA polymerase initiates the conversion of a single-stranded coliphage DNA to its duplex replicative form. J Biol Chem 250: 5995–6001Google Scholar
  21. Bouché JP, Rowen L. Kornberg A (1978) The RNA primer synthesized by primase to initiate phage G4 DNA replication. J Biol Chem 253: 765–769PubMedGoogle Scholar
  22. Bowman K, Ray DS (1975) Degradation of the viral strand of X174 parental replicative form DNA in a rep-host. J Virol 16: 838–843PubMedGoogle Scholar
  23. Brown DR, Reinberg D, Schmidt-Glenewinkel T, Roth MJ, Zipursky SL, Hurwitz J (1982) DNA structures required for qiX174 A protein-directed initiation and termination of DNA replication. Cold Spring Harbor Symp Quant Biol 47: 701–715Google Scholar
  24. Brown DR, Schmidt-Glenewinkel T, Reinberg D, Hurwitz J (1983) DNA sequences which support activities of the bacteriophage 11X174 gene A protein. J Biol Chem 258: 8402–8412PubMedGoogle Scholar
  25. Brown DR, Roth MJ, Reinberg D, Hurwitz J (1984) Analysis of bacteriophage X174 gene A protein-mediated termination and reinitiation of q$X174 DNA synthesis: I. Characterization of the termination and reinitiation reactions. J Biol Chem 259: 10545–10555Google Scholar
  26. Brutlag D, Schekman R, Kornberg A (1971) A possible role of RNA polymerase in the initiation of M13 DNA synthesis. Proc Natl Acad Sci USA 68: 2826–2829PubMedCrossRefGoogle Scholar
  27. Cleary JM, Ray DS (1980) Replication of the plasmid pBR322 under the control of a cloned replication origin from the single-stranded DNA phage M13. Proc Natl Acad Sci USA 77: 4638–4642PubMedCrossRefGoogle Scholar
  28. Cleary JM, Ray DS (1981) Deletion analysis of the cloned replication origin region from bacteriophage M13. J Virol 40: 197–203PubMedGoogle Scholar
  29. Danna KJ, Nathans D (1972) Bidirectional replication of simian virus 40 DNA. Proc Natl Acad Sci USA 69: 3097–3100PubMedCrossRefGoogle Scholar
  30. Denhardt DT, Dressler D, Ray DS (1978) The single-stranded DNA phages. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  31. Dintzis HM (1961) Assembly of the peptide chains of hemoglobin. Proc Natl Acad Sci USA 47: 247–261PubMedCrossRefGoogle Scholar
  32. Dotto GP, Horiuchi K (1981) Replication of a plasmid containing two origins of bacteriophage f1. J Mol Biol 153: 169–176PubMedCrossRefGoogle Scholar
  33. Dotto GP, Zinder ND (1983) The morphogenetic signal of bacteriophage fl. Virology 130: 252–256PubMedCrossRefGoogle Scholar
  34. Dotto GP, Zinder ND (1984a) Increased intracellular concentration of an initiator protein markedly reduces the minimal sequence required for initiation of DNA synthesis. Proc Natl Acad Sci USA: 81: 1336–1340PubMedCrossRefGoogle Scholar
  35. Dotto GP, Zinder ND (1984b) The minimal sequence for initiation of DNA synthesis can be reduced by qualitative or quantitative changes of an initiator protein. Nature 311: 279–280PubMedCrossRefGoogle Scholar
  36. Dotto GP, Enea V, Zinder ND (1981) Functional analysis of bacteriophage fl intergenic region. Virology 114: 463–473PubMedCrossRefGoogle Scholar
  37. Dotto GP, Horiuchi K, Jakes KS, Zinder ND (1982a) Replication origin of bacteriophage f1. Two signals required for its function. J Mol Biol 162: 335–343Google Scholar
  38. Dotto GP, Horiuchi K, Zinder ND (1982b) Initiation and termination of phage f1 plus-strand synthesis. Proc Natl Acad Sci USA 79: 7122–7126PubMedCrossRefGoogle Scholar
  39. Dotto GP, Horiuchi K, Zinder ND (1984) The functional origin of bacteriophage f1 DNA replication. Its signals and domains. J Mol Biol 172: 507–521Google Scholar
  40. Duguet M, Yarranton G, Gefter M (1979) The rep protein of Escherichia coli: interaction with DNA and other proteins. Cold Spring Harbor Symp Quant Biol 43: 335–343PubMedGoogle Scholar
  41. Eisenberg S, Denhardt DT (1974a) Structure of nascent 0X174 replicative form; evidence for discontinuous DNA replication. Proc Natl Acad Sci USA 71: 984–988PubMedCrossRefGoogle Scholar
  42. Eisenberg S, Denhardt DT ( 1974 b) The mechanism of replication of øX174 single-stranded DNA: X. Distribution of the gaps in nascent RF DNA. Biochim Biophys Res Commun 61: 532–537Google Scholar
  43. Eisenberg S, Finer M (1980) Cleavage and circularization of single-stranded DNA: a novel enzymatic activity of øX174 A* protein. Nucleic Acids Res 8: 5305–5315PubMedCrossRefGoogle Scholar
  44. Eisenberg S, Kornberg A (1979) Purification and characterization of øX174 gene A protein. A multifunctional enzyme of duplex DNA replication. J Biol Chem 254: 5328–5332Google Scholar
  45. Eisenberg S, Harbers B, Hours C, Denhardt DT (1975) The mechanism of replication of øX174: XII. Non-random locations of gaps in nascent ø X174 RFII DNA. J Mol Biol 99: 107–123PubMedCrossRefGoogle Scholar
  46. Eisenberg S, Griffith J, Kornberg A (1977) 1X174 cistron A protein is a multifunctional enzyme in DNA replication. Proc Natl Acad Sci USA 74: 3198–3202Google Scholar
  47. Eisenberg S, Scott JF, Kornberg A (1978) An enzyme system for replicating the duplex replicative form of 0 X17 DNA. In: Denhardt DT, Dressler D, Ray DS (eds) The single-stranded DNA phages. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 287–302Google Scholar
  48. Fiddes JC, Barrell BG, Godson GN (1978) Nucleotide sequences of the separate origins of synthesis of bacteriophage G4 viral and complementary strands. Proc Natl Acad Sci USA 75: 1081–1085PubMedCrossRefGoogle Scholar
  49. Fluit AC, Baas PD, Van Boom JH, Veeneman GH, Jansz HS (1984) Gene A protein cleavage of recombinant plasmids containing the 0 X174 replication origin. Nucleic Acids Res 12: 6443–6454PubMedCrossRefGoogle Scholar
  50. Fluit AC, Baas PD, Jansz HS (1985) The complete 30-base pair origin region of bacteriophage øX174 in a plasmid is both required and sufficient for in vivo rolling circle DNA replication and packaging. Eur J Biochem 149: 579–584PubMedCrossRefGoogle Scholar
  51. Fluit AC, Baas PD, Jansz HS (1986) Termination and reinitiation signals of bacteriophage øX174 rolling circle DNA replication. Virology 154: 357–368PubMedCrossRefGoogle Scholar
  52. Francke B, Ray DS (1971) Formation of the parental replicative form DNA of bacteriophage iX174 and initial events in its replication. J Mol Biol 61: 565–586PubMedCrossRefGoogle Scholar
  53. Francke B, Ray DS (1972) Cis-limited action of the gene A product of bacteriophage X174 and the essential bacterial site. Proc Natl Acad Sci USA 69: 475–479PubMedCrossRefGoogle Scholar
  54. Fulford W, Model P (1984) Specificity of translational regulation by two DNA-binding proteins. J Mol Biol 173: 211–226PubMedCrossRefGoogle Scholar
  55. Geider K, Beck E, Schaller H (1978) An RNA transcribed from DNA at the origin of phage fd single-strand to replicative form conversion. Proc Natl Acad Sci USA 75: 645–649PubMedCrossRefGoogle Scholar
  56. Gilbert W, Dressler D (1968) The rolling circle model. Cold Spring Harbor Symp Quant Biol 33: 473–484PubMedGoogle Scholar
  57. Godson GN (1974) Origin and direction of 0X174 double-and single-stranded DNA synthesis. J Mol Biol 90: 127–141PubMedCrossRefGoogle Scholar
  58. Godson GN (1977) G4 DNA replication: II. Synthesis of viral progeny single-stranded DNA. J Mol Biol 117: 337–351PubMedCrossRefGoogle Scholar
  59. Godson GN (1978) The other isometric phages. In: Denhardt DT, Dressler D, Ray DS (eds) The single-stranded DNA phages. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 103–112Google Scholar
  60. Godson GN, Barrell BG, Staden R, Fiddes JC (1978) Nucleotide sequence of bacteriophage G4 DNA. Nature 276: 236–247PubMedCrossRefGoogle Scholar
  61. Gray CP, Sommer R, Polke C, Beck E, Schaller H (1978) Structure of the origin of DNA replication of bacteriophage fd. Proc Natl Acad Sci USA 76: 50–53CrossRefGoogle Scholar
  62. Greenbaum JH, Marians KJ (1984) The interaction of Escherichia coli replication factor Y with complementary strand origins of DNA replication. Contact points revealed by DNase footprinting and protection from methylation. J Biol Chem 259: 2594–2601Google Scholar
  63. Grindley JN, Godson GN (1978 a) Evolution of bacteriophage ¢X174: IV. Restriction enzyme cleavage map of St-1. J Virol 127: 738–744Google Scholar
  64. Grindley JN, Godson GN (1978b) Evolution of bacteriophage 1X174: V. Alignment of the lX174 G4 and St-1 restriction enzyme cleavage maps. J Virol 27: 745–753PubMedGoogle Scholar
  65. Heidekamp F, Langeveld SA, Baas PD, Jansz HS (1980) Studies of the recognition sequence of øX174 gene A protein. Cleavage site of ehX gene A protein in St-1 RFI DNA. Nucleic Acids Res 8: 2009–2021PubMedCrossRefGoogle Scholar
  66. Heidekamp F, Baas PD, Van Boom JH, Veeneman GH, Zipursky SL, Jansz HS (1981) Construction and characterization of recombinant plasmid DNAs containing sequences of the origin of bacteriophage gX174 DNA replication. Nucleic Acids Res 9: 3335–3354PubMedCrossRefGoogle Scholar
  67. Heidekamp F, Baas PD, Jansz HS (1982) Nucleotide sequences at the øX gene A protein cleavage site in replicative form I DNAs of bacteriophages U3, G14 and a3. J Virol 42: 91–99PubMedGoogle Scholar
  68. Hill DF, Petersen GP (1982) Nucleotide sequence of bacteriophage f1 DNA. J Virol 44: 32–46PubMedGoogle Scholar
  69. Horiuchi K (1986) Interaction between gene II protein and the DNA replication origin of bacteriophage f1. J Mol Biol 188: 215–223PubMedCrossRefGoogle Scholar
  70. Horiuchi K, Zinder ND (1976) Origin and direction of synthesis of bacteriophage fi DNA. Proc Natl Acad Sci USA 73: 2341–2345PubMedCrossRefGoogle Scholar
  71. Horiuchi K, Ravetch JV, Zinder ND (1979) DNA replication of bacteriophage f1 in vivo. Cold Spring Harbor Symp Quant Biol 43: 389–399PubMedGoogle Scholar
  72. Hourcade D, Dressler D (1978) Site-specific initiation of a DNA fragment. Proc Natl Acad Sci USA 75: 1652–1656PubMedCrossRefGoogle Scholar
  73. Ikeda J, Yudelevich A, Hurwitz J (1976) Isolation and characterization of the protein coded by gene A of bacteriophage qiX174 DNA. Proc Natl Acad Sci USA 73: 2669–2673PubMedCrossRefGoogle Scholar
  74. Ikeda J, Yudelevich A, Shimamoto N, Hurwitz J (1979) Role of polymeric forms of the bacteriophage X174 coded gene A protein in qlX174 RFI cleavage. J Biol Chem 254: 9416–9428PubMedGoogle Scholar
  75. Imber R, Low R, Ray D (1983) Identification of a primosome assembly site in the region of the on 2 replication origin of the E. coli mini-F plasmid. Proc Natl Acad Sci USA 80: 7132–7136PubMedCrossRefGoogle Scholar
  76. Jacob F, Brenner S, Cuzin F (1963) On the regulation of DNA replication in bacteria. Cold Spring Harbor Symp Quant Biol 28: 329–347Google Scholar
  77. Johnson PH, Sinsheimer RL (1974) Structure of an intermediate in the replication of bacteriophage X174 deoxyribonucleic acid: the initiation site for DNA replication. J Mol Biol 83: 47–61PubMedCrossRefGoogle Scholar
  78. Johnston S, Ray DS (1984) Interference between M13 and on-M13 plasmids is mediated by a replication enhancer sequence near the viral strand origin. J Mol Biol 177: 685–700PubMedCrossRefGoogle Scholar
  79. Keegstra W, Baas PD, Jansz HS (1979) Bacteriophage q1X174 RF DNA replication in vivo. A study by electron microscopy. J Mol Biol 135: 69–89Google Scholar
  80. Kim MH, Ray DS (1985) Mutational mechanisms by which an inactive replication origin of bacteriophage M13 is turned on are similar to mechanisms of activation of ras proto-oncogenes. J Virol 53: 871–878PubMedGoogle Scholar
  81. Kim MH, Hines JC, Ray DS (1981) Viable deletions of the M13 complementary strand origin. Proc Natl Acad Sci USA 78: 6784–6788PubMedCrossRefGoogle Scholar
  82. Kornberg A (1980) In: DNA replication. Freeman, San FranciscoGoogle Scholar
  83. Kornberg A (1982) In: Supplement to DNA Replication. Freeman, San FranciscoGoogle Scholar
  84. Koths K, Dressler D (1978) Analysis of the øX DNA replication cycle by electron microscopy. Proc Natl Acad Sci USA 75: 605–609PubMedCrossRefGoogle Scholar
  85. Koths K, Dressler D (1980) The rolling circle capsid complex as an intermediate in gX174 DNA replication and viral assembly. J Biol Chem 255: 4328–4338PubMedGoogle Scholar
  86. Lambert PF, Waring DA, Wells RD, Reznikoff WS (1986) DNA requirements at the bacteriophage G4 origin of complementary strand DNA synthesis. J Virol 58: 450–458PubMedGoogle Scholar
  87. Lambert PF, Kawashima E, Reznikoff WS (1987) Secondary structure at the bacteriophage G4 origin of complementary-strand DNA synthesis: in vivo requirements. Gene 53: 257–264PubMedCrossRefGoogle Scholar
  88. Langeveld SA, Van Mansfeld ADM, Baas PD, Jansz HS, Van Arkel GA, Weisbeek PJ (1978) Nucleotide sequence of the origin of replication in bacteriophage X174 RF DNA. Nature 272: 417–419CrossRefGoogle Scholar
  89. Langeveld SA, Van Mansfeld ADM, De Winter J, Weisbeek PJ (1979) Cleavage of single-stranded DNA by the A and A* proteins of bacteriophage 5X174. Nucleic Acids Res 7: 2177–2188PubMedCrossRefGoogle Scholar
  90. Langeveld SA, Van Arkel GA, Weisbeek Pi (1980) Improved method for the isolation of the A and A* proteins of bacteriophage tiS X174. FEBS Lett 114: 269–272PubMedCrossRefGoogle Scholar
  91. Langeveld SA, Van Mansfeld ADM, Van der Ende A, Van de Pol JH, Van Arkel GA, Weisbeek PJ (1981) The nuclease specificity of the bacteriophage qlX174 A* protein. Nucleic Acids Res 9: 545–563Google Scholar
  92. Lau PCK, Spencer JH (1985) Nucleotide sequence and genome organization of bacteriophage S13 DNA. Gene 40: 273–284PubMedCrossRefGoogle Scholar
  93. Linney E, Hayashi M (1973) The two proteins of gene A of ¢X174. Nature [New Biol] 245: 6–8Google Scholar
  94. Marians KJ, Soeller W, Zipursky SL (1982) Maximal limits of the Escherichia coli replication factor Y effector site sequences in pBR322 DNA. J Biol Chem 257: 5656–5662PubMedGoogle Scholar
  95. Martin DM, Godson GN (1977) G4 DNA replication: I. Origin of synthesis of the viral and complementary DNA strands. J Mol Biol 117: 321–335Google Scholar
  96. McMacken R, Ueda K, Kornberg A (1977) Migration of Escherichia coli dnaB protein on the template DNA strand as a mechanism in initiating DNA replication. Proc Natl Acad Sci USA 74: 4190–4194PubMedCrossRefGoogle Scholar
  97. Messing J, Vieira J (1982) A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments. Gene 19: 269–276PubMedCrossRefGoogle Scholar
  98. Messing J, Gronenborn B, Muller-Hill B, Hofschneider PH (1977) Filamentous coliphage M13 as a cloning vehicle: insertion of a HindIII fragment of the lac regulatory region in M13 replicative form in vitro. Proc Natl Acad Sci USA 74: 3642–3646PubMedCrossRefGoogle Scholar
  99. Meyer TF, Geider K (1979a) Bacteriophage fd gene II-protein: I. Purification, involvement in RF replication, and the expression of gene II. J Biol Chem 254: 12636–12641Google Scholar
  100. Meyer TF, Geider K (1979b) Bacteriophage fd gene II-protein: II. Specific cleavage and relaxation of supercoiled RF from filamentous phages. J Biol Chem 254: 12642–12646Google Scholar
  101. Meyer TF, Geider K (1980) Replication of phage fd with purified proteins. In: Alberts B, Fox CF (eds) Mechanistic studies of DNA replication and genetic recombination. Academic, New York, pp 579–588Google Scholar
  102. Meyer TF, Geider K (1982) Enzymatic synthesis of bacteriophage fd viral DNA. Nature 296: 828–832PubMedCrossRefGoogle Scholar
  103. Meyer TF, Geider K, Kurz C, Schaller H (1979) Cleavage site of bacteriophage fd gene II-protein in the origin of viral strand replication. Nature 278: 365–367PubMedCrossRefGoogle Scholar
  104. Model P, McGill C, Mazur B, Fulford WD (1982) The replication of bacteriophage f1: gene V protein regulates the synthessis of gene II protein. Cell 29: 329–335PubMedCrossRefGoogle Scholar
  105. Moses PB, Model P (1984) A rho-dependent transcription termination signal in bacteriophage f1. J Mol Biol 172: 1–22PubMedCrossRefGoogle Scholar
  106. Nomura N, Ray DS (1980) Replication of bacteriophage M13: XV. Location of the specific nick in M13 replicative form II accumulated in Escherichia coli polA exl. J Virol 34: 162–167PubMedGoogle Scholar
  107. Nomura N, Low R, Ray DS (1982a) Identification of ColE1 sequences that direct single-strand to double-strand conversion by a iX type mechanism. Proc Natl Acad Sci USA 79: 3153–3157PubMedCrossRefGoogle Scholar
  108. Nomura N, Low R, Ray DS (1982b) Selective cloning of ColE1 DNA initiation sequences using the cloning vector M13 A E101. Gene 18: 239–246PubMedCrossRefGoogle Scholar
  109. Ogawa T, Arai K, Okazaki T (1983) Site selection and structure of DNA-linked RNA primers synthesized by the primosome in phage 60X174 DNA replication in vitro. J Biol Chem 258: 13353–13358PubMedGoogle Scholar
  110. Peeters BPH, Peters RM, Schoenmakers JGG, Konings RNH (1985) Nucleotide sequence and genetic organization of the genome of the N-specific filamentous bacteriophage IKe; comparison with the genome of the F-specific filamentous phages M13, fd and f1. J Mol Biol 181: 27–39PubMedCrossRefGoogle Scholar
  111. Peeters BPH, Schoenmakers JGG, Konings RNH (1986a) The gene II proteins of the filamentous phage IKe and Ff (M13, fd and f1) are not functionally interchangeable during viral strand replication. Nucleic Acids Res 14: 5067–5080PubMedCrossRefGoogle Scholar
  112. Peeters BPH, Schoenmakers JGG, Konings RNH (1986b) Plasmid pKUN9, a versatile vector for the selective packaging of both DNA strands into single-stranded DNA containing phage-like particles. Gene 41: 39–46PubMedCrossRefGoogle Scholar
  113. Peeters BPH, Schoenmakers JGG, Konings RNH (1987) Functional comparison of the DNA sequences involved in the replication and packaging of the viral strands of the filamentous phage IKe and Ff (M13, fd and fl). DNA 6: 139–147PubMedCrossRefGoogle Scholar
  114. Ray DS, Dueber J (1975) Structure and replication of replicative forms of the ¢X-related bacteriophage G4. In: Goulian M, Hanawalt P (eds) DNA synthesis and its regulation. Benjamin, Menlo Park, California, pp 370–385Google Scholar
  115. Ray DS, Cleary JM, Hines JC, Kim MH, Strathearn M, Kaguni LS, Roark M (1981) DNA initiation determinants of bacteriophage M13 and of chimeric derivatives carrying foreign replication determinants. In: Ray DS, Fox CF (eds) The initiation of DNA replication. Academic, New York, pp 169–193Google Scholar
  116. Reinberg D, Zipursky SL, Weisbeek PJ, Brown DR, Hurwitz J (1983) Studies on the efi X174 gene A protein-mediated termination of leading strand DNA synthesis. J Biol Chem 258: 529–537PubMedGoogle Scholar
  117. Roth MJ, Brown DR, Hurwitz J (1984) Analysis of bacteriophage ¢X174 gene A protein-mediated termination and reinitiation of ¢X DNA synthesis: II. Structural characterization of the covalent OX A protein-DNA complex. J Biol Chem 259: 10556–10567PubMedGoogle Scholar
  118. Sakai H, Godson GN (1985) Isolation and construction of mutants of the G4 minus strand origin: analysis of their in vivo activity. Biochim Biophys Acta 826: 30–37PubMedGoogle Scholar
  119. Sakai H, Komano T, Godson GN (1985) Essential structures in the complementary DNA origin of bacteriophage G4. Agric Biol Chem 49: 1505–1507CrossRefGoogle Scholar
  120. Sakai H, Komano T, Godson GN (1987) Replication origin (ori) on the complementary DNA strand of Escherichia coli phage G4: biological properties of mutants. Gene 53: 265–273PubMedCrossRefGoogle Scholar
  121. Sanger F, Coulson AR, Friedman T, Air GM, Barrell BG, Brown NL, Fiddes JC, Hutchison CA III, Slocombe PM, Smith M (1978) The nucleotide sequence of bacteriophage øX174. J Mol Biol 125: 225–246PubMedCrossRefGoogle Scholar
  122. Sanhueza S, Eisenberg S (1984) Cleavage of single-stranded DNA by the X174 A* protein. The A* single-stranded DNA covalent linkage. Proc Natl Acad Sci USA 81: 4285–4289Google Scholar
  123. Sanhueza S, Eisenberg S (1985) Bacteriophage 0X174 A protein cleaves single-stranded DNA and binds to it covalently through a tyrosyl-dAMP phosphodiester bond. J Virol 53: 695–697PubMedGoogle Scholar
  124. Schaller H (1979) The intergenic region and the origins for filamentous phage DNA replication. Cold Spring Harbor Symp Quant Biol 43: 401–408PubMedGoogle Scholar
  125. Schaller H, Uhlmann A, Geider K (1976) A DNA fragment from the origin of single-strand to double-strand DNA replication of bacteriophage fd. Proc Natl Mad Sci USA 73: 49–53CrossRefGoogle Scholar
  126. Shlomai J, Kornberg A (1980a) An Escherichia coli replication protein that recognizes a unique sequences within a hairpin region in øX174 DNA. Proc Natl Acad Sci USA 77: 799–803PubMedCrossRefGoogle Scholar
  127. Shlomai J, Kornberg A (1980 b) A prepriming DNA replication enzyme of Escherichia coli: II. Actions of protein n’: a sequence specific DNA dependent ATPase. J Biol Chem 255: 6794–6798Google Scholar
  128. Sims J, Benz EW Jr (1980) Initiation of DNA replication by the Escherichia coli dnaG protein: evidence that tertiary structure is involved. Proc Natl Acad Sci USA 77: 900–904PubMedCrossRefGoogle Scholar
  129. Sims J, Dressler D (1978) Site-specific initiation of a DNA fragment: DNA sequence of the initiator region. Proc Natl Acad Sci USA 75: 3094–3098Google Scholar
  130. Sims J, Capon D, Dressler D (1979) dnaG (primase)-dependent origins of DNA replication: nucleotide sequences of the negative strand initiation sites of bacteriophages St-1, OK, a3. J Biol Chem 254: 12615–12628Google Scholar
  131. Sinsheimer RL (1959) Purification and properties of bacteriophage q’X174. J Mol Biol 1: 37–42CrossRefGoogle Scholar
  132. Smits MA, Jansen J, Konings RHN, Schoenmakers JGG (1984) Initiation and termination signals for transcription in bacteriophage M13. Nucleic Acids Res 12: 4071–4081PubMedCrossRefGoogle Scholar
  133. Soeller E, Marians KJ (1982) Deletion mutants defining the Escherichia coli replication factor Y effector site sequences in pBR322 DNA. Proc Natl Acad Sci USA 79: 7253–7257PubMedCrossRefGoogle Scholar
  134. Soeller E, Greenbaum J, Abarzua P, Marians KJ (1983) The interaction of Escherichia coli replication factor Y with origins of DNA replication. In: Cozarelli N (ed) UCLA symposia on molecular and cellular biology new series, vol 10. Liss, New York, pp 125–134Google Scholar
  135. Soeller W, Abarzua P, Marians KJ (1984) Mutational analysis of primosome assembly sites: II. Role of secondary structure in the formation of active sites. J Biol Chem 259: 14293–14300Google Scholar
  136. Stayton M, Kornberg A (1983) Complexes of Escherichia coli primase with the replication origin of G4 phage DNA. J Biol Chem 258: 13205–13212PubMedGoogle Scholar
  137. Suggs SV, Ray DS (1977) Replication of bacteriophage M13: XI. Localization of the origin for M13 single-strand synthesis. J Mol Biol 110: 147–163PubMedCrossRefGoogle Scholar
  138. Suggs SV, Ray DS (1979) Nucleotide sequence of the origin for bacteriophage M13 DNA replication. Cold Spring Harbor Symp Quant Biol 43: 379–388PubMedGoogle Scholar
  139. Tabak HF, Griffith J, Geider K, Schaller H, Kornberg A (1974) Initiation of deoxyribonucleic acid synthesis: VII. A unique location of the gap in the M13 replicative duplex synthesized in vitro. J Biol Chem 249: 3049–3054PubMedGoogle Scholar
  140. Van der Avoort HGAM, Van Arkel GA, Weisbeek PJ (1982) Cloned bacteriophage ¢X174 DNA sequence interferes with synthesis of the complementary strand of infecting bacteriophage glX174. J Virol 42: 1–11PubMedGoogle Scholar
  141. Van der Avoort HGAM, Van der Ende A, Van Arkel GA, Weisbeek PJ (1984) Incompatibility regions in the single-stranded DNA phages X174, G4 and M13. J Virol 50: 533–540PubMedGoogle Scholar
  142. Van der Ende A, Teertstra R, Van der Avoort HGAM, Weisbeek PJ (1983) Initiation signals for complementary strand DNA synthesis on single-stranded plasmid DNA. Nucleic Acids Res 11: 4957–4975PubMedCrossRefGoogle Scholar
  143. Van Mansfeld ADM, Langeveld SA, Weisbeek PJ, Baas PD, Van Arkel GA, Jansz HS (1979) Cleavage site of QIX174 gene A protein in c1X and G4 RFI DNA. Cold Spring Harbor Symp Quant Biol 43: 331–334PubMedGoogle Scholar
  144. Van Mansfeld ADM, Langeveld SA, Baas PD, Jansz HS, Van der Marel GA, Veeneman GH, Van Boom JH (1980) Recognition sequence of bacteriophage lX174 gene A protein: an initiator of DNA replication. Nature 288: 561–566PubMedCrossRefGoogle Scholar
  145. Van Mansfeld ADM, Van Teeffelen HAAM, Zandberg J, Baas PD, Jansz HS, Veeneman GH, Van Boom JH (1982) A* protein of bacteriophage X174 carries an oligonucleotide which it can transfer to the 3’-OH of a DNA chain. FEBS Lett 150: 103–108PubMedCrossRefGoogle Scholar
  146. Van Mansfeld ADM, Baas PD, Jansz HS (1984a) Gene A protein of bacteriophage 1X174 is a highly specific single-strand nuclease and binds via a tyrosyl residue to DNA after cleavage. Adv Exp Med Biol 179: 221–230PubMedGoogle Scholar
  147. Van Mansfeld ADM, Van Teeffelen HAAM, Baas PD, Veeneman GH, Van Boom JH, Jansz HS (1984b) The bond in the bacteriophage X174 gene A protein-DNA complex in a tyrosyl-5’phosphate ester. FEBS Lett 173: 351–356PubMedCrossRefGoogle Scholar
  148. Van Mansfeld ADM, Van Teeffelen HAAM, Fluit AC, Baas PD, Jansz HS (1986a) Effect of SSB protein on cleavage of single-stranded DNA by X gene A and A* protein. Nucleic Acids Res 14: 1845–1861PubMedCrossRefGoogle Scholar
  149. Van Mansfeld ADM, Van Teeffelen HAAM, Baas PD, Jansz HS (1986b) Two juxtaposed tyrosyl-OH groups participate in øX174 gene A protein catalysed cleavage and ligation of DNA. Nucleic Acids Res 14: 4229–4238PubMedCrossRefGoogle Scholar
  150. Van Wezenbeek PMGF, Hulsebos JJM, Schoenmakers JGG (1980) Nucleotide sequence of the filamentous bacteriophage M13 DNA genome: comparison with phage fd. Gene 11: 129–148PubMedCrossRefGoogle Scholar
  151. Weisbeek PJ, Van Mansfeld ADM, Kuhlemeier C, Van Arkel GA, Langeveld SA (1981) Properties of the A and A* proteins of bacteriophage G4. The origin of G4 replicative-form DNA replication. Eur J Biochem 114: 501–507PubMedCrossRefGoogle Scholar
  152. Westergaard O, Brutlag D, Kornberg A (1972) Initiation of deoxyribonucleic acid synthesis: IV. Incorporation of the ribonucleic primer into the phage replicative form. J Biol Chem 248: 1361–1364Google Scholar
  153. Wickener S, Hurwitz J (1975) Association of øX174 DNA-dependent ATPase activity with an Escherichia coli protein, replication factor Y, required for in vitro synthesis of øX174 DNA. Proc Natl Acad Sci USA 72: 3342–3346CrossRefGoogle Scholar
  154. Wickner W, Brutlag D, Schekman R, Kornberg A (1972) RNA synthesis initiates in vitro conversion of M13 DNA to its replicative form. Proc Natl Acad Sci USA 69: 965–969PubMedCrossRefGoogle Scholar
  155. Yen TSB, Webster RE (1982) Translational control of bacteriophage f1 gene II and gene X proteins by gene V protein. Cell 29: 337–345PubMedCrossRefGoogle Scholar
  156. Zechel K, Bouché JP, Kornberg A (1975) Replication of phage G4. A novel and simple system for the initiation of deoxyribonucleic acid synthesis. J Biol Chem 250: 4684–4689PubMedGoogle Scholar
  157. Zinder ND, Horiuchi K (1985) Multiregulatory element of filamentous bacteriophages. Microbiol Rev 49: 101–106PubMedGoogle Scholar
  158. Zipursky SL, Marians KJ (1980) Identification of two Escherichia coli factor Y effector sites near the origins of replication of the plasrnids Col E1 and pBR322. Proc Natl Acad Sci USA 77: 6521–6524PubMedCrossRefGoogle Scholar
  159. Zipursky SL, Marians KJ (1981) Escherichia coli Y sites of plasmid pBR322 can function as origins of DNA replication. Proc Natl Acad Sci USA 78: 6111–6115PubMedCrossRefGoogle Scholar
  160. Zipursky SL, Reinberg D, Hurwitz J (1980) In vitro DNA replication of recombinant plasmid DNAs containing the origin of progeny replicative form DNA synthesis of phage øX174. Proc Natl Acad Sci USA 77:5182–5186PubMedCrossRefGoogle Scholar
  161. Zolotukhin AS, Drygin YuF, Bogdanov AA (1984) Bacteriophage øX174 A* protein binds in vitro to the phage øX174 DNA by a phosphodiester bond via a tyrosine residue. Biochemistry International 9: 799–806PubMedGoogle Scholar
  162. Zuccarelli AJ, Benbow RM, Sinsheimer RL (1976) Formation of parental replicative form of bacteriophage øX174. J Mol Biol 106: 375–402PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • P. D. Baas
    • 1
  • H. S. Jansz
    • 1
  1. 1.Institute of Molecular Biology and Medical Biotechnology, and Laboratory for Physiological ChemistryUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations