Advertisement

Retroregulation of Bacteriophage λ int Gene Expression

  • G. Guarneros
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 136)

Abstract

Upon infection of Escherichia coli, bacteriophage λ may elicit either a lytic or a lysogenic response. In the lytic response the infected cell is killed but produces many copies of the phage. In the lysogenic program the phage’s lytic functions are repressed, and its DNA persists in the surviving cell integrated in the chromosome as a prophage. The prophage may be induced into the lytic cycle by inactivating the repression system. When this occurs, the phage DNA is excised from the host chromosome, replicated, and packaged into viral particles. Many copies of the phage are produced, as in the lytic response to infection. Both integration of phage DNA into, and excision of prophage DNA from the bacterial chromosome require the phage-directed Int protein and the bacterial integration host factor (IHF). The excision reaction also requires Xis protein encoded by the phage genome (see Weisberg and Landy 1983 for a review).

Keywords

Cold Spring Harbor Laboratory Bacteriophage Lambda Transcription Termination Integration Host Factor Transcription Termination Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham J, Mascarenhas D, Fischer R, Benedik M, Campbell A, Echols H (1980) DNA sequence of regulatory region for integration gene of bacteriophage lambda. Proc Natl Acad Sci USA 77: 2477–2481PubMedCrossRefGoogle Scholar
  2. Abremski K, Gottesman S (1982) Purification of the bacteriophage lambda xis gene product required for lambda excisive recombination. J Biol Chem 257: 9658–9662PubMedGoogle Scholar
  3. Altuvia S, Locker-Giladi H, Koby S, Ben-Nun O, Oppenheim AB (1987) RNase III stimulates the translation of the cIII gene of bacteriophage A. Proc Natl Acad Sci USA 84: 6511–6515PubMedCrossRefGoogle Scholar
  4. Anevski PJ, Lozeron HA (1981) Multiple pathways of RNA processing and decay for the major leftward N-independent RNA transcript of coliphage lambda. Virology 113: 39–53PubMedCrossRefGoogle Scholar
  5. Belasco JG, Beatty JT, Adams CW, von Gabain A, Cohen SN (1985) Differential expression of photosynthesis genes in R. capsulata results from segmental differences in stability within the polycistronic rxcA transcript. Cell 40: 171–181PubMedCrossRefGoogle Scholar
  6. Belfort M (1980) The cII-independent expression of the phage lambda int gene in RNase III-defective E. coli. Gene 11: 149–155PubMedCrossRefGoogle Scholar
  7. Chung S, Echols H (1977) Positive regulation of integrative recombination by the cII and cIII genes of bacteriophage A. Virology 79: 312–319PubMedCrossRefGoogle Scholar
  8. Court D, Adhya S, Nash N, Enquist L (1977) The phage.1 integration protein (Int) is subject to control by the cII and cIII gene products. In: Bukhari AI, Shapiro JA, Adhya SL (eds) DNA insertion elements, plasmids, and episomes. Cold Spring Harbor Laboratory, New York, pp 389–402Google Scholar
  9. Court D, Huang TF, Oppenheim AB (1983a) Deletion analysis of the retroregulatory site for the A int gene. J Mol Biol 166: 233–240PubMedCrossRefGoogle Scholar
  10. Court D, Schmeissner U, Bear S, Rosenberg M, Oppenheim AB, Montanez C, Guarneros G (1983b) Control of int gene expression by RNA processing. In: Hamer D, Rosenberg M (eds) Gene expression. Liss, New York, pp 311–326Google Scholar
  11. Court D, Schmeissner U, Rosenberg M, Oppenheim A, Guarneros G, Montanez C (1983c) Processing of lambda Mt RNA: mechanism for gene control. In: Schlesinger D (ed) Microbiology 1983. American Society for Microbiology, Washington D.C. pp 78–81Google Scholar
  12. Daniels DL, Schroeder JL, Szybalski W, Sanger F, Coulson AR, Hong GF, Hill DF, Petersen GB, Blattner FR (1983) Complete annotated lambda sequence. In: Hendrix RW, Roberts JW, Stahl FW, Weisberg RA (eds) Lambda II. Cold Spring Harbor Laboratory, New York, pp 519–676Google Scholar
  13. Dunn JJ (1976) RNase III cleavage of single stranded RNA. Effect of ionic strength on the fidelity of cleavage. J Biol Chem 251: 3807–3814PubMedGoogle Scholar
  14. Dunn JJ, Studier FW (1975) Effect of RNase III cleavage on translation of bacteriophage T7 messenger RNAs. J Mol Biol 99: 487–499PubMedCrossRefGoogle Scholar
  15. Echols H, Guarneros G (1983) Control of integration and excision. In: Hendrix RW, Roberts JW, Stahl FW, Weisberg RA (eds) Lambda II. Cold Spring Harbor Laboratory, New York, pp 75–92Google Scholar
  16. Epp C, Pearson LM, Enquist L (1981) Downstream regulation of int gene expression by the b2 region in phage lambda. Gene 13: 327–337PubMedCrossRefGoogle Scholar
  17. Fien K, Turck A, Kang I, Kielty S, Wulff DL, McKenney K, Rosenberg M (1984) cII-dependent activation of the pRE promoter of coliphage lambda fused to the Escherichia coli galK gene. Gene 32: 141–150Google Scholar
  18. Franklin NC (1985) Conservation of genome form but not sequence in the transcription antitermina-tion determinants of bacteriophage 2, cp21 and P22. J Mol Biol 181: 75–84PubMedCrossRefGoogle Scholar
  19. Friedman DI, Gottesman M (1983) Lytic mode of lambda development. In: Hendrix RW, Roberts JW, Stahl FW, Weisberg RA (eds) Lambda II. Cold Spring Harbor Laboratory, New York, pp 21–51Google Scholar
  20. Gottesman M, Oppenheim A, Court D (1982) Retroregulation: control of gene expression from sites distal to the gene. Cell 29: 727–728PubMedCrossRefGoogle Scholar
  21. Guarneros G, Galindo JM (1979) The regulation of integrative recombination by the b2 region and the cII gene of bacteriophage 2. Virology 95: 119–126PubMedCrossRefGoogle Scholar
  22. Guarneros G, Galindo JM (1984) A post-transcriptional switch for the regulation of bacteriophage lambda int gene expression. In: Chopra VL, Joshi BC, Sharma RP, Bansal HC (eds) Genetics: new frontiers. Oxford & IBH Publishing Co, New Delhi, pp 49–58Google Scholar
  23. Guarneros G, Montanez C, Hernandez T, Court D (1982) Post-transcriptional control of bacteriophage 2 int gene expression from a site distal to the gene. Proc Natl Acad Sci USA 79: 238–242PubMedCrossRefGoogle Scholar
  24. Gupta RS, Kasai T, Schlessinger D (1977) Purification and some novel properties of Escherichia coli RNase II. J Biol Chem 252: 8945–8949PubMedGoogle Scholar
  25. Hautala JA, Basset CL, Giles NH, Kushner SR (1979) Increased expression of a eukaryotic gene in Escherichia coli through stabilization of its messenger RNA. Proc Natl Acad Sci USA 76: 5774–5778PubMedCrossRefGoogle Scholar
  26. Hayashi MN, Hayashi M (1985) Cloned DNA sequences that determine mRNA stability of bacteriophage 0(174 in vivo are functional. Nucleic Acids Res 13: 5937–5948PubMedCrossRefGoogle Scholar
  27. Hendrix D (1971) Identification of proteins coded in phage lambda. In: Hershey AD (ed) The bacteriophage lambda. Cold Spring Harbor Laboratory, New York, pp 335–370Google Scholar
  28. Hoess RH, Foeller C, Bidwell K, Landy A (1980) Site-specific recombination functions of bacteriophage lambda: DNA sequence of regulatory regions and overlapping structural genes for Int and Xis. Proc Natl Acad Sci USA 77: 2482–2486Google Scholar
  29. Hyman HC, Honigman A (1986) Transcription termination and processing sites in the bacteriophage 2 pL operon. J Mol Biol 189: 131–142PubMedCrossRefGoogle Scholar
  30. Kasunic DA, Kushner SR (1980) Expression of the HIS3 gene of Saccharomyces cerevisiae in polynucleotide phosphorylase deficient strains of Escherichia coli K12. Gene 12: 1–101PubMedCrossRefGoogle Scholar
  31. Katzir N, Oppenheim A, Belfort M, Oppenheim AB (1976) Activation of the lambda int gene by the cII and cIII gene products. Virology 74: 324–331PubMedCrossRefGoogle Scholar
  32. Lehman JF (1974).. Site-specific recombination: local transcription and an inhibitor specified by the b2 region. MGG 130: 333–344Google Scholar
  33. Lozeron HA, Dahlberg JE, Szybalski W (1976) Processing of the major leftward mRNA of coliphage lambda. Virology 71: 262–277PubMedCrossRefGoogle Scholar
  34. Lozeron HA, Subbarao MN, Daniels DL, Blattner FR (1983) Transcriptional antitermination and RNase III-mediated processing events of the major RNA transcripts of bacteriophage lambda. Microbiology 1983: 74–77Google Scholar
  35. Luk K-C, Dobrzanski P, Szybalski W (1982) Cloning and characterization of the termination site tI for the gene int transcript in phage lambda. Gene 17: 259–262PubMedCrossRefGoogle Scholar
  36. Mascarenhas D, Kelley R, Campbell A (1981) DNA sequence of the att region of coliphage 434. Gene 15: 151–156PubMedCrossRefGoogle Scholar
  37. Mascarenhas D, Trueheart M, Benedik M, Campbell A (1983) Retroregulation: control of integrase expression by the b2 region of bacteriophages) and 434. Virology 124: 100–108PubMedCrossRefGoogle Scholar
  38. McKenney K, Shimatake H, Court D, Schmeissner U, Brady C, Rosenberg M (1981) A system to study promoter and terminator signals recognized by E. coli RNA polymerase. In: Chirikjian JC, Papas TS (eds) Gene amplification and analysis, vol II: analysis of nucleic acids by enzymatic methods. Elsevier, New York, pp 383–415Google Scholar
  39. Miller HI, Abraham J, Benedik M, Campbell A, Court D, Echols H, Fischer R, Galindo JM, Guarneros G, Hernandez T, Mascarenhas D, Montanez C, Schindler D, Schmeissner U, Sosa L (1981) Regulation of the integration-excision reaction by bacteriophage lambda. Cold Spring Harbor Symp Quant Biol 45: 439–445PubMedGoogle Scholar
  40. Montanez C, Bueno J, Schmeissner U, Court DL, Guarneros G (1986) Mutations of bacteriophage lambda that define independent but overlapping RNA processing and transcription termination sites. J Mol Biol 191: 29–37PubMedCrossRefGoogle Scholar
  41. Mott JE, Galloway JL, Platt T (1985) Maturation of Escherichia coli tryptophan operon mRNA: evidence for 3’ exonucleolytic processing after rho-dependent termination. EMBO J 4: 1887–1891PubMedGoogle Scholar
  42. Nash HA (1975 a) Integrative recombination of bacteriophage lambda in vitro. Proc Natl Acad Sci USA 72:1072–1076PubMedCrossRefGoogle Scholar
  43. Nash HA (1975 b) Integrative recombination in bacteriophage lambda: analysis of recombinant DNA. J Mol Biol 91:501–514PubMedCrossRefGoogle Scholar
  44. Nashimoto H, Uchida H (1985) DNA sequencing of the Escherichia coli ribonuclease III gene and its mutations. MGG 201: 25–29PubMedGoogle Scholar
  45. Oppenheim AB, Gottesman S, Gottesman M (1982) Regulation of bacteriophage.i int gene expression. J Mol Biol 158: 327–346PubMedCrossRefGoogle Scholar
  46. Panayotatos N, Truong K (1985) Cleavage within an RNase III site can control mRNA stability and protein synthesis in vivo. Nucleic Acids Res 13: 2227–2240PubMedCrossRefGoogle Scholar
  47. Plamann MD, Stauffer GV (1985) Characterization of a cis-acting regulatory mutation that maps at the distal end of the Escherichia coli glyA gene. J Bacteriol 161: 650–654PubMedGoogle Scholar
  48. Platt T (1986) Transcription termination and the regulation of gene expression. Ann Rev Biochem 55: 339–372PubMedCrossRefGoogle Scholar
  49. Robertson HD (1982) Escherichia coli ribonuclease III cleavage sites. Cell 30:669–672PubMedCrossRefGoogle Scholar
  50. Robertson HD, Dickson E, Dunn JJ (1977) A nucleotide sequence from ribonuclease III processing site in bacteriophage T7 RNA. Proc Natl Acad Sci USA 74: 822–826PubMedCrossRefGoogle Scholar
  51. Roehrdanz RL, Dove WF (1977) A factor in the b2 region affecting site-specific recombinations in lambda. Virology 79: 40–49PubMedCrossRefGoogle Scholar
  52. Rosenberg M, Court D (1979) Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet 13: 319–353PubMedCrossRefGoogle Scholar
  53. Rosenberg M, Schmeissner U (1982) Regulation of gene expression by transcription termination and RNA processing. In: Safer B, Grunberg-Manago M (eds) Interaction of transcriptional and translational controls in the regulation of gene expression. Elsevier, New York, pp 1–16Google Scholar
  54. Saito H, Richardson C (1981) Processing of mRNA by ribonuclease III regulates expression of gene 1.2 of bacteriophage T7. Cell 27: 533–542PubMedCrossRefGoogle Scholar
  55. Saito H, Tabor S, Tamanoi F, Richardson CC (1980) Nucleotide sequence of the primary origin of bacteriophage T7 DNA replication: relationship to adjacent genes and regulatory elements. Proc Natl Acad Sci USA 77: 3917–3921PubMedCrossRefGoogle Scholar
  56. Schindler D, Echols H (1981) Retroregulation of the int gene of bacteriophage 2. Control of translation completion. Proc Natl Acad Sci USA 78: 4475–4479Google Scholar
  57. Schmeissner U, McKenney K, Rosenberg M, Court D (1984a) Removal of terminator structure by RNA processing regulates int gene expression. J Biol Mol 176: 39–53CrossRefGoogle Scholar
  58. Schmeissner U, McKenney K, Rosenberg M, Court D (1984b) Transcription terminator involved in the expression of the int gene of phage lambda. Gene 28: 343–350PubMedCrossRefGoogle Scholar
  59. Steitz JA, Bryan RA (1977) Two ribosome binding sites from the gene 0.3 messenger RNA of bacteriophage T7. J Mol Biol 114: 527–543PubMedCrossRefGoogle Scholar
  60. Studier FW, Rosenberg AH, Simon MN, Dunn JJ (1979) Genetic and physical mapping in the early region of bacteriophage T7 DNA. J Mol Biol 135: 917–937PubMedCrossRefGoogle Scholar
  61. Susskind M, Youderian P (1983) Bacteriophage P22 antirepressor and its control. In: Hendrix RW, Roberts JW, Stahl FW, Weisberg RA (eds) Lambda II. Cold Spring Harbor Laboratory, New York, pp 347–364Google Scholar
  62. von Gabain A, Belasco JG, Schottel JL, Chang ACY, Cohen SN (1983) Decay of mRNA in Escherichia coli: investigation of the fate of specific segments of transcripts. Proc Natl Acad Sci USA 80: 653–657CrossRefGoogle Scholar
  63. Weisberg RA, Landy A (1983) Site specific recombination in phage lambda. In: Hendrix RW, Roberts JW, Stahl FW, Weisberg RA (eds) Lambda II. Cold Spring Harbor Laboratory, New York, pp 211–250Google Scholar
  64. Wilder DA, Lozeron HA (1979) Differential modes of processing and decay for the major N-dependent RNA transcripts of coliphage 2. Virology 99: 241–256PubMedCrossRefGoogle Scholar
  65. Wong HC, Chang S (1986) Identification of a positive retroregulator that stabilizes mRNAs in bacteria. Proc Natl Acad Sci USA 83: 3233–3237PubMedCrossRefGoogle Scholar
  66. Wulff DL, Rosenberg M (1983) Establishment of repressor synthesis. In: Hendrix RW, Roberts JW, Stahl FW, Weisberg RA (eds) Lambda II. Cold Spring Harbor Laboratory, New York, pp 53–73Google Scholar
  67. Zaret KS, Sherman F (1984) Mutationally altered 3’ ends of yeast CYCJ mRNA affect transcript stability and translational efficiency. J Mol Biol 176: 107–135CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • G. Guarneros
    • 1
  1. 1.Department of Genetics and Molecular BiologyCentro de Investigación y de Estudios AvanzadosMexico CityMexico

Personalised recommendations