Advertisement

Base Substitution Mutations Induced by the Mycotoxin Citrinin

  • A. A. Brakhage
  • M. G. Bürger
  • E. E. Creppy
  • G. Dirheimer
  • R. J. Röschenthaler
Part of the Archives of Toxicology book series (TOXICOLOGY, volume 12)

Abstract

The mycotoxin citrinin, a secondary metabolite of toxigenic strains of Penicillium citrinum and more than 20 other Penicillium and Aspergillus species, belongs to the natural, environmental toxins. Contaminations, especially of grains but also of other food and feedstuffs, have been reported. Citrinin is considered as a nephrotoxin. Reports on the mutagenicity of citrinin are controversial. Shinohara et al. (1976) and Kanisawa (1984) found a cocancerogenic effect of citrinin in combination with other substances in rats and mice. In short-term mutagenicity tests like the Ames and the SOS chromotest, several groups of investigators, including the present authors, have obtained negative results, whereas in the Rec and PolA test results have been positive (Kuczuk et al. 1978; Ueno et al. 1978; Ueno and Kubota 1976; Wehner et al. 1978). Recently, it has been shown that citrinin causes single- and double-strand breaks in the DNA of intact E. coli cells and induces DNA repair synthesis in permeabilized E. coli cells (Martin et al. 1986). In vitro the mycotoxin produces celavage of ColE1 plasmid and lamda DNA in the presence of small amounts of copper ions. It was proposed that citrinin generates in combination with metal ions hydroxyl radicals and also radicals of the quinone moiety of citrinin, which are responsible for the DNA-destroying activity of the mycotoxin (Martin et al. 1986). In order to investigate whether such DNA damage leads to mutagenesis, we employed the E. coli-phage M13am6H1 system of Brandenburger et al. (1981).

Keywords

Penicillium Citrinum Amber Mutant Quinone Moiety Phage Strain Spontaneous Revertant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brandenburger A, Godson GN, Radman M, Glickman BW, van Sluis CV, Doubleday OP (1981) Radiation-induced base substitution mutagenesis in single-stranded DNA phage M13. Nature 294:180–182PubMedCrossRefGoogle Scholar
  2. Hindley J, Staden R (1983) DNA sequencing. In: Work TS, Burdon RH (eds) DNA sequencing. Elsevier Biomedical, AmsterdamGoogle Scholar
  3. Kanisawa M (1984) Synergistic effect of citrinin on hepatorenal carcinogenesis of Ochratoxin A in mice. In: Kurata H, Ueno Y (eds) Developments in food science, vol 7. Elsevier North-Holland, AmsterdamGoogle Scholar
  4. Kuczuk MH, Benson PM, Heath H, Hayes AW (1978) Evaluation of the mutagenic potential of mycotoxins using Salmonella typhimurium and Saccharomyces cerevisiae. Mutat Res 53:11–20PubMedGoogle Scholar
  5. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  6. Martin W, Lorkowski G, Creppy EE, Dirheimer G, Röschenthaler R (1986) Action of citrinin on bacterial chromosomal and plasmid DNA in vivo and in vitro. Appl Environ Microbiol 52:1273–1279PubMedGoogle Scholar
  7. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  8. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467PubMedCrossRefGoogle Scholar
  9. Shinohara Y, Arai M, Hirao K, Sugihara S, Nakanishi K, Tsunoda H, Ito W (1976) Combination effect of citrinin and other chemicals on rat kidney tumorigenesis. Jpn J Cancer Res 67:147–155Google Scholar
  10. Ueno Y, Kubota K (1976) DNA-attacking ability of carcinogenic mycotoxins in recombination-deficient mutant cells of Bacillus subtilis. Cancer Res 36:445–451PubMedGoogle Scholar
  11. Ueno Y, Kubota K, Ito T, Nakamura Y (1978) Mutagenicity of carcinogenic mycotoxins in Salmonella typhimurium. Cancer Res 38:536–542PubMedGoogle Scholar
  12. Wehner FC, Thiel PG, van Rensburg SJ, Demasius IPC (1978) Mutagenicity to Salmonella typhimurium of some Aspergillus and Penicillium mycotoxins. Mutat Res 58:193–203PubMedCrossRefGoogle Scholar
  13. Wezenbeek van PMGF, Hulsebos TJM, Schoenmakers JGG (1980) Nucleotide sequence of the filamentous bacteriophage M13 DNA genome: comparison with phage fd. Gene 11:129–148PubMedCrossRefGoogle Scholar
  14. Yanish-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequence of the M13mpl8 and pUC19 vectors. Gene 33:103–119CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • A. A. Brakhage
    • 1
  • M. G. Bürger
    • 1
  • E. E. Creppy
    • 2
  • G. Dirheimer
    • 2
  • R. J. Röschenthaler
  1. 1.Institut für MikrobiologieUniversität MünsterMünsterGermany
  2. 2.Institut de Biologie Moléculaire et Cellulaire du CNRSStrasbourgFrance

Personalised recommendations