Magnetic Fluctuations and Excitations in the S=1 Antiferromagnetic Chains of NENP

  • L. P. Regnault
  • W. A. C. Erkelens
  • J. Rossat-Mignod
  • J. P. Renard
  • M. Verdaguer
  • W. G. Stirling
  • C. Vettier
Part of the Springer Proceedings in Physics book series (SPPHY, volume 23)


In this paper we report experimental results concerning the magnetic properties of the S = 1 antiferromagnetic chain, as observed in the new system Ni (en)2N02C104 (alias NENP). Conventional ideas on the ground state properties of antiferromagnetic quantum chains have been recently challenged by HALDANE /1/. According to his theory, the S = 1 Heisenberg antiferromagnetic chain (1D-HAF) would exhibit an energy gap between a non-magnetic singlet ground state and the first excited states, in sharp contrast with the S = 1/2 1D-HAF which exhibits a continuum of excited states /2/. Such a difference between integer and half integer spins has been more clearly verified by numerical calculations /3,4,5/. The best evaluations agree with a rather large value of the energy gap EG ∼ O.4∣J∣ for the case S = 1 /5/. However, the existence of the Haldane gap would affect largely the magnetic properties. The most characteristic features would be an exponential decrease of all the susceptibilities when T ≲ EG/k, and the absence of long-range ordering (LRO) down to very low temperature, due to the finite size of the correlation length /1,3/. unfortunately, the existence of such properties is not a unique signature of the Haldane conjecture. Indeed, similar effects are predicted and observed in the S = ½ alternating chain /6,7/ as in the S = ½ spin-Peierls system /8,9/. This makes more difficult to obtain an unambiguous description of the experimental results.


Field Dependence Inelastic Neutron Scatter Magnetic Fluctuation Interchain Coupling Unambiguous Description 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F.D.M. Haidane: Phys. Rev. Lett. 50, 1153 (1983).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    J. Des Cloizeaux, J.J. Pearson: Phys. Rev. 128., 2131 (1962).ADSCrossRefGoogle Scholar
  3. 3.
    B. Botet, R. Jullien, M. Kolb: Phys. Rev. B28, 3914 (1983).ADSGoogle Scholar
  4. 4.
    J.B. Parkinson, J.C. Bonner: Phys. Rev. B32, 4703 (1985).ADSGoogle Scholar
  5. 5.
    M.P. Nightingale, H.W.J. Blöte: Phys. Rev. B33, 659 (1986).ADSGoogle Scholar
  6. 6.
    M. Duffy, K.P. Barr: Phys. Rev. 165, 647 (1968).ADSCrossRefGoogle Scholar
  7. 7.
    L.N. Bulaevskii: Sov. Phys. JETP 17, 684 (1963).Google Scholar
  8. 8.
    J.W. Bray, L.V. Interrante, I.S. Jacobs, J.C. Bonner: in Extended Linear Chain Materials, ed. by J.S. Miller, vol. 3 (Plenum, New York, 1982) p. 353.Google Scholar
  9. 9.
    E. Pytte: Phys. Rev. B10, 4637 (1974).ADSGoogle Scholar
  10. 10.
    A. Meyer, A. Gleizes, J.J. Gired, M. Verdaguer, O. Kahn: Inorg. Chem. 21, 1729 (1982).CrossRefGoogle Scholar
  11. 11.
    J.P. Renard, M. Verdaguer, L.P. Regnault, W.A.C. Erkelens, J. Rossat-Mignod, W.G. Stirling: Europhys. Lett. 3., 945 (1987).ADSCrossRefGoogle Scholar
  12. 12.
    I.U. Heilmann, J.K. Kjems, Y. Endoh, G.F. Reiter, G. Shirane: Phys. Rev. B24, 3939 (1981).ADSGoogle Scholar
  13. 13.
    K. Osano, H. Shiba, Y. Endoh: Prog. Theor. Phys. 67, 995 (1982).ADSCrossRefGoogle Scholar
  14. 14.
    H.J.M. De Groot, L.J. De Jongh, R.D. Willet, J. Reedijk: J. Appl. Phys. 53, 8038 (1982).ADSCrossRefGoogle Scholar
  15. 15.
    A. Daoud, A. Ben Salah, C. Chappert, J.P. Renard, A. Cheikhrouhou, Tranqui Duc, M. Verdaguer: Phys. Rev. B33., 6253 (1986).ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • L. P. Regnault
    • 1
  • W. A. C. Erkelens
    • 1
  • J. Rossat-Mignod
    • 1
  • J. P. Renard
    • 2
  • M. Verdaguer
    • 3
  • W. G. Stirling
    • 4
  • C. Vettier
    • 4
  1. 1.Centre d’Etudes NucléairesDRF-G/SPh-MDN, 85 XGrenoble CedexFrance
  2. 2.Institut d’Electronique FondamentaleUniversité Paris IXOrsay CedexFrance
  3. 3.CNRS (UA 420)Université Paris-SudOrsay CedexFrance
  4. 4.Institut Laue-Langevin, 156 XGrenoble CedexFrance

Personalised recommendations