Advertisement

Hamilton-Dirac Formulation of Supersymmetric Yang-Mills Theories

  • A. Rebhan
  • R. Di Stefano
  • M. Kreuzer
Conference paper

Abstract

It is well-known fact that the super-Poincaré group in général allows a representation on fields on the dynamical subspace of the configuration space,
$$\Phi _0 = \left\{ {\Phi |\frac{{\sigma \text{S}\left[ \Phi \right]}} {{\sigma \Phi }} = 0} \right\}$$
, with S[Ф] being an invariant action functional (up to surface contributions which will be neglected throughout).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Wess, B. Zumino: Nucl. Phys. B70, 39 (1974)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    R. Gasalbuoni: Nuovo Cimento 33A, 115 (1976)ADSGoogle Scholar
  3. 3.
    R. Di Stefano: Preprint ITP-SB-82–40 (unpublished), ITP-SB-85–9Google Scholar
  4. 4.
    L. Brink, J. Scherk, J.H. Schwarz: Nucl. Phys. B121, 77 (1977)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    W. Siegel, M. Rocek: Phys. Lett. 105B, 275 (1981)ADSGoogle Scholar
  6. 6.
    R. Di Stefano: Preprint ITP-SB-86–6;Google Scholar
  7. R. Di Stefano, M. Kreuzer, A. Rèbhan: TU-Wien-Preprint 1987Google Scholar
  8. 7.
    M. Baake, P. Reinicke, Rittenberg: J. Math. Phys. 26, 1070 (1985)MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • A. Rebhan
    • 1
    • 3
  • R. Di Stefano
    • 2
    • 3
  • M. Kreuzer
    • 1
    • 3
  1. 1.Institut für Theoretische PhysikTechnische Universität WienWienAustria
  2. 2.Institute for Theoretical Physik, S.U.N.Y. at Stony BrookStony BrookUSA
  3. 3.Department of PhysicsNew York Institute of TechnologyOld WestburyUSA

Personalised recommendations