Circle Mappings

  • O. E. LanfordIII
Conference paper


These lectures are devoted to the theory of a particularly simple kind of dynamical system — continuous invertible mappings of the circle to itself. We begin by reviewing the classical theory of these systems; then take up very recent developments using renormalization group ideas.


Unstable Manifold Parameter Family Rotation Number Universality Class Circle Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I.P. Cornfeld, S.V. Fomin, and Ya.G. Sinai: Ergodic Theory, Springer-Verlag, Berlin Heidelberg New York, (1982)MATHGoogle Scholar
  2. 2.
    M.J. Feigenbaum, L.P. Kadanoff, and S.J. Shenker: Quasi-periodicity in dissipative systems: a renormalization group analysis, Physica 5D, 370–386 (1982)MathSciNetADSGoogle Scholar
  3. 3.
    M. Herman: Sur la conjugaison différentiable des difféomorphismes du circle a des rotations, Publ. Math. IHES 49. 5–234 (1979)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    O.E. Lanford: Renormalization group methods for circle mappings, in Statistical Mechanics and Field Theory: Mathematical Aspects, ed. by T.C. Dorlas, N.M. Hugenholtz, and M. Winnink. Lecture Notes in Physics 257, Springer Verlag, Berlin Heidelberg New York, 176–189 (1986)CrossRefGoogle Scholar
  5. 5.
    O.E. Lanford III and R. de la Llave: Solution of the functional equation for critical circle mappings with golden ratio rotation number, in preparationGoogle Scholar
  6. 6.
    B.D. Mestel: A computer assisted proof of universality for cubic critical maps of the circle with golden mean rotation number, Ph.D. Thesis, Mathematics Department, University of Warwick, (1985)Google Scholar
  7. 7.
    S. Ostlund, D. Rand, J. Sethna, and E. Siggia: Universal properties of the transition from quasi-periodicity to chaos in dissipative systems, Phyisca 8D, 303–342 (1983)MathSciNetADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • O. E. LanfordIII
    • 1
  1. 1.IHESChartresFrance

Personalised recommendations