Towards the Quantum Computer: Information Processing with Single Electrons

  • G. Mahler
  • K. Obermayer
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 38)


Computational systems can be defined by the task they are expected to perform. At the same time they are physical systems. During the last 50 years, the technology and the architecture of information processing machines led to a drastic miniaturization of the hardware elements by several orders of magnitude. While the length of a vacuum tube in 1940 was about 10cm, the typical length of a transistor on a silicon chip has been reduced to 10μm in the year 1980 and to 1μm in the VLSI-circuits of today. By obvious extrapolation one concludes, that the “nm-chip” containing computing elements of the size of individual molecules will be developed at the beginning of the next century. Does this kind of extrapolation make sense in useful technological terms? Or does there exist an inherent length scale, below which the constraints imposed on systems capable of information processing must violate the physical laws?


Attractor State Light Mode Envelope Function Electronic Subsystem Coherent Population Trapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ebeling U. and Feistel R.: Physik der Selbstorganisation und Evolution, Akademie Verlag Berlin 1982, page 303Google Scholar
  2. 2.
    Haken H.: in Stochastic Phenomena and Chaotic Behavior in Complex Systems ed. by P. Schuster, Springer 1984Google Scholar
  3. 3.
    Altarelli M.: in Heterojunctions and Semiconductor Superlattices (Ed. Allen G., Bastard G., Boccara N., Lannoo M. und Voos M. ), Springer-Verlag Berlin (1986)Google Scholar
  4. 4.
    Asada M., Miyamoto Y. and Suematsu Y., IEEE J. Quant. El. QE-22(9), 1915 (1986)Google Scholar
  5. 5.
    Obermayer K., Teich W. and Mahler G., to be publishedGoogle Scholar
  6. 6.
    Lassnig R., Phys. Rev. B31(12), 8076 (1985)Google Scholar
  7. 7.
    Haken H.: Quantenfeldtheorie des Festkörpers, B. G. Teubner-Verlag Stuttgart, p. 293ff (1973)Google Scholar
  8. 8.
    Dalton B. J. and Knight P. L., J. Phys. B15, 3997 (1982)Google Scholar
  9. 9.
    Nagourney W., Sandberg J. and Dehmelt H., Phys. Rev. Lett. 56 (26), 2797 (1986)CrossRefADSGoogle Scholar
  10. 10.
    Teich W., Obermayer K. and Mahler G., to be publishedGoogle Scholar
  11. 11.
    Hadden R. C. and Stillinger F. H., in Molecular Electronic Devices (Ed. Carter L. ), Marcel Dehler Inc. (1982)Google Scholar
  12. 12.
    Adachi S., J. Appl. Phys. 58 (3), R1 (1985)CrossRefADSGoogle Scholar
  13. 13.
    Obermayer K., Mahler G. and Haken H., Phys. Rev. Lett. 58, 1792 (1987)CrossRefADSGoogle Scholar
  14. 14.
    Maddox J., Nature 327, 97 (May 1987)CrossRefADSGoogle Scholar
  15. 15.
    Landauer R., Foundations of Physics 16, 551 (1986)CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Landauer R. and Buettiker M., Physica Scripta T9, 155 (1985)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • G. Mahler
    • 1
  • K. Obermayer
    • 1
  1. 1.Institut für Theoretische PhysikUniversität StuttgartStuttgart 80Fed. Rep. of Germany

Personalised recommendations