Skip to main content

Electrophysiology

  • Chapter
Paramecium

Abstract

Bioelectricity is a characteristic of living matter. It occurs in conjunction with the existence of lipid bilayers or “membranes” which enclose cells and some intracellular organelles. A membrane potential, i.e. the difference in voltage between the external and internal faces of the membrane, results from an uneven ion distribution at both sides of the membrane. This applies in particular to Ca2+ which is kept at concentrations near 10−7 M in living cells. Because of the low intracellular concentration of Ca2+, a minor entry of Ca2+ modifies the number of free cytosolic Ca ions so that this cation can serve as a potent second messenger of the cell. Bioelectricity, cell membranes and the unique intracellular Ca milieu are closely interrelated in function and may have a common evolutionary origin.

In memoriam Roger Eckert (1934–1986)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams D, Gage P (1980) Divalent ion currents and the delayed potassium conductance in an Aplysia neurone. J Physiol 304:297–313

    PubMed  CAS  Google Scholar 

  • Almers W, Palade PT (1981) Slow calcium and potassium currents across frog muscle membrane: measurements with a vaseline-gap technique. J Physiol 312:159–176

    PubMed  CAS  Google Scholar 

  • Armstrong CM, Binstock L (1965) Anomalous rectification in squid giant axon injected with tetraethylammonium chloride. J Gen Physiol 48:859–872

    Article  PubMed  CAS  Google Scholar 

  • Armstrong CM, Lopez-Barneo J (1987) External calcium ions are required for potassium channel gating in squid neurons. Science 236:712–714

    Article  PubMed  CAS  Google Scholar 

  • Ashcroft FM, Stanfield PR (1981) Calcium dependence of the inactivation of calcium currents in skeletal muscle fibres of an insect. Science 213:224–226

    Article  PubMed  CAS  Google Scholar 

  • Ballanyi K, Deitmer JW (1984) Concentration-dependent effects of Ba on action potentials and membrane currents in the ciliate Stylonychia. Comp Biochem Physiol 78A:575–581

    Article  CAS  Google Scholar 

  • Best JG (1954) The photosensitization of Paramacium aurelia by temperature shock. J Exp Zool 126:87–99

    Article  Google Scholar 

  • Boheim G, Hanke W, Eibl J, Schultz JE (1981) Characterization of a Ca2+-dependent cationic channel from cilia of wild-type and pawn-mutant Paramecium by incorporation into planar bilayers. Hoppe Seyler’s Z Physiol Chem 362:192

    Google Scholar 

  • Bramstedt F (1935) Dressurversuche mit Paramecium caudatum und Stylonychia mytilus. Z Vergl Physiol 22:490–516

    Article  Google Scholar 

  • Brehm P, Eckert R (1978) Calcium entry leads to inactivation of calcium channel in Paramecium. Science 202:1203–1206

    Article  PubMed  CAS  Google Scholar 

  • Brehm P, Dunlap K, Eckert R (1978) Ca-dependent repolarization in Paramecium. J Physiol 274:639–654

    PubMed  CAS  Google Scholar 

  • Brehm P, Eckert R, Tillotson D (1980) Calcium-mediated inactivation of Ca current in Paramecium. J Physiol 306:193–203

    PubMed  CAS  Google Scholar 

  • Deitmer JW (1983) Ca channels in the membrane of the hypotrich ciliate Stylonychia. In: Grinnell A, Moody WJ (eds) The physiology of excitable cells. Liss, New York, pp 51–63

    Google Scholar 

  • Deitmer JW (1984) Evidence for two voltage-dependent calcium currents in the membrane of the ciliate Stylonychia. J Physiol 355:137–159

    PubMed  CAS  Google Scholar 

  • Deitmer JW, Machemer H (1982) Osmotic tolerance of Ca-dependent excitability in the marine ciliate Paramecium calkinsi. J Exp Biol 97:311–324

    CAS  Google Scholar 

  • De Peyer JE, Deitmer JW (1980) Divalent cations as charge carriers during two functionally different membrane currents in the ciliate Stylonychia. J Exp Biol 88:73–89

    PubMed  Google Scholar 

  • De Peyer JE, Machemer H (1977) Membrane excitability in Stylonychia properties of the two-peak regenerative Ca-response. J Comp Physiol 121:15–32

    Article  Google Scholar 

  • De Peyer JE, Machemer H (1978) Hyperpolarizing and depolarizing mechanoreceptor potentials in Stylonychia. J Comp Physiol 127:255–266

    Article  Google Scholar 

  • Doroszewski M (1970) Responses of the ciliate Dileptus to mechanical stimuli. Acta Protozool 7:353–362

    Google Scholar 

  • Dunlap K (1977) Localization of calcium channels in Paramecium caudatum. J Physiol 271:119–133

    PubMed  CAS  Google Scholar 

  • Eckert R (1972) Bioelectric control of ciliary activity. Science 176:473–481

    Article  PubMed  CAS  Google Scholar 

  • Eckert R, Brehm P (1979) Ionic mechanisms of excitation in Paramecium. Annu Rev Biophys Bioeng 8:353–383

    Article  PubMed  CAS  Google Scholar 

  • Eckert R, Chad JE (1984) Inactivation of Ca channels. Prog Biophys Mol Biol 44:215–267

    Article  PubMed  CAS  Google Scholar 

  • Eckert R, Naitoh Y (1970) Passive electrical properties of Paramecium and problems of ciliary coordination. J Gen Physiol 55:467–483

    Article  PubMed  CAS  Google Scholar 

  • Eckert R, Naitoh Y, Machemer H (1976) Calcium in the bioelectric and motor functions of Paramecium. Symp Soc Exp Biol 30:233–255

    CAS  Google Scholar 

  • Ehrlich BE, Finkelstein A, Fuorte M, Kung C (1984) Voltage-dependent calcium channels from Paramecium cilia incorporated into planar lipid bilayers. Science 225:427–428

    Article  PubMed  CAS  Google Scholar 

  • Engelmann TW (1882) Über Licht- und Farbenperception niederster Organismen. Arch Ges Physiol 29:387–400

    Article  Google Scholar 

  • Ettisch G, Peterfi T (1925) Zur Methodik der Elektrometrie der Zelle. Pflügers Arch 208:454–466

    Article  CAS  Google Scholar 

  • Frankenhaeuser B, Hodgkin AL (1957) The action of calcium on the electrical properties of squid axons. J Physiol 137:218–244

    PubMed  CAS  Google Scholar 

  • Gorman ALF, Thomas MV, Hermann A (1981) Intracellular calcium and the control of neuronal pacemaker activity. Fed Proc 40:2233–2239

    PubMed  CAS  Google Scholar 

  • Hagiwara S, Byerli L (1981) Calcium channel. Annu Rev Neurosci 4:69–125

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara S, Saito N (1959) Voltage-current relations in nerve cell membrane of Onchidium verruculatum. J Physiol 148:161–179

    PubMed  CAS  Google Scholar 

  • Hara R, Assai H (1980) Electrophysiological responses of Didinium nasutum to Paramecium capture and mechanical stimulation. Nature (London) 283:869–870

    Article  Google Scholar 

  • Harrington NR, Learning E (1900) The reaction of Amoeba to light of different colours. Am J Physiol 3:9–16

    Google Scholar 

  • Hempelmann F (1926) Tierpsychologie. Akademische Verlagsanstalt, Leipzig

    Google Scholar 

  • Hennessey TM, Kung C (1985) Slow inactivation of the calcium current of Paramecium is dependent on voltage and not internal calcium. J Physiol 365:165–179

    PubMed  CAS  Google Scholar 

  • Hennessey TM, Nelson DL (1979) Thermosensory behaviour in Paramecium tetraurelia a quantitative assay and some factors that influence thermal avoidance. J Gen Microbiol 112:337–347

    CAS  Google Scholar 

  • Hennessey TM, Saimi Y, Kung C (1983) A heat-induced depolarization of Paramecium and its relationship to thermal avoidance behavior. J Comp Physiol 153:39–46

    Article  Google Scholar 

  • Hess P, Tsien RW (1984) Mechanism of ion permeation through calcium channels. Nature (London) 309:453–456

    Article  CAS  Google Scholar 

  • Hildebrand E (1978) Ciliary reversal in Paramecium temperature dependence of K+-induced excitability decrease and of recovery. J Comp Physiol 127:39–44

    Article  CAS  Google Scholar 

  • Hinrichsen RD, Saimi Y (1984) A mutation that alters properties of the calcium channel in Paramecium tetraurelia. J Physiol 351:397–410

    PubMed  CAS  Google Scholar 

  • Ivens I, Deitmer JW (1986) Inhibition of a voltage-dependent Ca current by concanavalin A. Pflügers Arch 406:212–217

    Article  PubMed  CAS  Google Scholar 

  • Iwatsuki K, Naitoh Y (1981) The role of symbiotic Chlorella in photoresponses of Paramecium bursaria. Proc Jpn Acad Sci Ser B 57:318–323

    Article  Google Scholar 

  • Iwatsuki K, Naitoh Y (1983) Behavioral responses in Paramecium multimicronucleatum to visible light. Photochem Photobiol 37:415–419

    Article  Google Scholar 

  • Jennings HS (1906) Behavior of the lower organisms. pp 1–366, Columbia Univ Press, New York

    Book  Google Scholar 

  • Kaissling KE (1982) Molekulares Erkennen: Biophysik der Chemorezeption. In: Hoppe W, Lohmann W, Markl H, Ziegler H (eds) Biophysik. Springer, Berlin, Heidelberg, New York, pp 722–734

    Google Scholar 

  • Kamada T (1934) Some observations on potential differences across the ectoplasm membrane of Paramecium. J Exp Biol 11:94–102

    Google Scholar 

  • Kinosita H, Dryl S, Naitoh Y (1964) Changes in the membrane potential and the responses to stimuli in Paramecium. J Fac Sci Univ Tokyo, Sect IV, 10:291–301

    Google Scholar 

  • Koehler O (1935) Beiträge zum Verhalten von Paramecium-Teilstücken. Verh Dtsch Zool Ges 36:74–84

    Google Scholar 

  • Kubalski A (1983) Electrical properties of the cell membrane of a marine ciliate Fabrea salina. Acta Protozool 22:219–228

    CAS  Google Scholar 

  • Kung C, Saimi Y (1985) Ca2+ channels of Paramecium a multidisciplinary study. Curr Top Membr Transport 23:45–66

    CAS  Google Scholar 

  • Machemer H (1966) Versuche zur Frage nach der Dressierbarkeit hypotricher Ciliaten unter Einsatz hoher Individuenzahlen. Z Tierpsychol 6:641–654

    Google Scholar 

  • Machemer H (1969) Eine 2-Gradientenhypothese für die Metachronieregulation bei Ciliaten. Arch Protistenk 111:100–128

    Google Scholar 

  • Machemer H (1972) Temperature influences on ciliary beat and metachronal coordination in Paramecium. J Mechanochem Cell Motility 1:57–66

    Google Scholar 

  • Machemer H (1974) Frequency and directional responses of cilia to membrane potential changes in Paramecium. J Comp Physiol 92:293–316

    Article  Google Scholar 

  • Machemer H (1976) Interactions of membrane potential and cations in regulation of ciliary activity in Paramecium. J Exp Biol 65:427–448

    PubMed  CAS  Google Scholar 

  • Machemer H, Deitmer JW (1985) Mechanoreception in ciliates. In: Hardie R et al. (eds) Progress in sensory physiology, vol 5. Springer, Berlin Heidelberg New York Tokyo, pp 81–118

    Chapter  Google Scholar 

  • Machemer H, Deitmer JW (1987) From structure to behaviour: Stylonychia as a model system for cellular physiology. In: Corliss JO, Patterson DJ (eds) Progress in protistology, vol 2. Biopress, Bristol, pp 213–330

    Google Scholar 

  • Machemer H, De Peyer J (1977) Swimming sensory cells: electrical membrane parameters, receptor properties and motor control in ciliated Protozoa. Verh Dtsch Zool Ges 1977:86–110

    Google Scholar 

  • Machemer H, Eckert R (1975) Ciliary frequency and orientational responses to clamped voltage steps in Paramecium. J Comp Physiol 104:247–260

    Article  Google Scholar 

  • Machemer H, Machemer-Röhnisch S (1984) Mechanical and electrical correlates of mechanoreceptor activation of the ciliated tail of Paramecium. J Comp Physiol A 154:273–278

    Article  Google Scholar 

  • Machemer H, Ogura A (1979) Ionic conductances of membranes in ciliated and deciliated Paramecium. J Physiol 296:49–60

    PubMed  CAS  Google Scholar 

  • Machemer-Röhnisch S, Machemer H (1984) Receptor current following controlled stimulation of immobile tail cilia in Paramecium caudatum. J Comp Physiol A 154:263–271

    Article  Google Scholar 

  • Maeda K, Imae Y, Oosawa F (1976) Effect of temperature on motility and chemotaxis of Escherichia coll. J Bacteriol 127:1039–1046

    PubMed  CAS  Google Scholar 

  • Martinac B, Machemer H (1984) Effects of varied culturing and experimental temperature on electrical membrane properties in Paramecium. J Exp Biol 108:179–194

    Google Scholar 

  • Martinac B, Saimi Y, Gustin MC, Kung C (1986) Single-channel recording in Paramecium. Biophys J 49:167a

    Article  Google Scholar 

  • McLauglin SGA (1977) Electrostatic potentials at membrane-solution interfaces. Curr Top Membr Transp 9:71–144

    Article  Google Scholar 

  • Meech RW (1978) Calcium-dependent potassium activation in nervous tissues. Annu Rev Biophys Bioeng 7:l-18

    Article  PubMed  CAS  Google Scholar 

  • Mendelssohn M (1902) Récherches sur la thermotaxie des organismes unicellulaires. J Physiol Pathol Gen 4:393–409

    Google Scholar 

  • Moolenaar WH, deGoede J, Verveen AA (1976) Nature (London) 260:344–346

    Article  CAS  Google Scholar 

  • Naitoh Y (1982) Protozoa. In: Shelton GAB (ed) Electrical conduction and behaviour in ‘simple’ invertebrates. Clarendon, Oxford, pp 1–48

    Google Scholar 

  • Naitoh Y, Eckert R (1968a) Electrical properties of Paramecium caudatum modification by bound and free cations. Z Vergl Physiol 61:427–452

    Article  Google Scholar 

  • Naitoh Y, Eckert R (1968b) Electrical properties of Paramecium caudatum All-or-none electrogenesis. Z Vergl Physiol 61:453–472

    Article  Google Scholar 

  • Naitoh Y, Eckert R (1969a) Ionic mechanisms controlling behavioral responses in Paramecium to mechanical stimulation. Science 164:963–965

    Article  CAS  Google Scholar 

  • Naitoh Y, Eckert R (1969b) Ciliary orientation: controlled by cell membrane or by intracellular fibrils? Science 166:1633–1635

    Article  CAS  Google Scholar 

  • Naitoh Y, Eckert R (1973) Sensory mechanisms in Paramecium. II. Ionic basis of the hyperpolarizing mechanoreceptor potential. J Exp Biol 54:53–65

    Google Scholar 

  • Naitoh Y, Eckert R (1974) The control of ciliary activity in Protozoa. In: Sleigh MA (ed) Cilia and flagella. Academic Press, London New York, pp 305–352

    Google Scholar 

  • Naitoh Y, Eckert R, Friedman K (1972) A regenerative calcium response in Paramecium. J Exp Biol 56:667–681

    PubMed  CAS  Google Scholar 

  • Nakaoka Y, Oosawa F (1977) Temperature-sensitive behavior of Paramecium caudatum. J Protozool 24:575–580

    Google Scholar 

  • Neher E (1971) Two fast transient current components during voltage clamp on snail neurons. J Gen Physiol 58:36–53

    Article  PubMed  CAS  Google Scholar 

  • Noble D (1984) The surprising heart. J Physiol 353:1–50

    PubMed  CAS  Google Scholar 

  • Oertel D, Schein SJ, Kung C (1977) Separation of membrane currents using a Paramecium mutant. Nature (London) 268:120–124

    Article  CAS  Google Scholar 

  • Oertel D, Schein SJ, Kung C (1978) A potassium conductance activated by hyperpolarization in Paramecium. J Membr Biol 43:169–185

    Article  PubMed  CAS  Google Scholar 

  • Ogura A (1977) Non-lethal deciliation of Paramecium with ethanol. M Sci Thesis, Fac Sci, Univ Tokyo, pp 1–10

    Google Scholar 

  • Ogura A (1981) Deciliation and reciliation in Paramecium after treatment with ethanol. Cell Struct Funct 6:43–50

    Article  Google Scholar 

  • Ogura A, Machemer H (1980) Distribution of mechanoreceptor channels in the Paramecium surface membrane. J Comp Physiol 135:233–242

    Article  CAS  Google Scholar 

  • Ogura A, Takahashi M (1976) Artificial deciliation causes loss of Ca-dependent responses in Paramecium. Nature (London) 264:170–172

    Article  CAS  Google Scholar 

  • Onimaru H, Naitoh Y, Ohki K, Nozawa Y (1979) Electrophysiological studies on the membrane of Tetrahymena. Dobutsugaku Zasshi (Zool Mag Tokyo) 88:529

    Google Scholar 

  • Pape HC, Machemer H (1986) Electrical properties and membrane currents in the ciliate Didinium. J Comp Physiol A 158:111–124

    Article  Google Scholar 

  • Poff KL (1985) Temperature sensing in microorganisms. In: Colombetti G, Lenci F, Song PS (eds) Sensory perception and transduction in aneural organisms. Plenum, New York, 299–307

    Chapter  Google Scholar 

  • Reisser W (1980) The metabolic interactions between Paramecium bursaria Ehrbg. and Chlorella spec. in the Paramecium bursaria-symbiosis. Arch Microbiol 125:291–293

    Article  CAS  Google Scholar 

  • Reuter H (1984) Ion channels in cardiac cell membranes. Annu Rev Physiol 46:473–484

    Article  PubMed  CAS  Google Scholar 

  • Roos A, Boron WF (1981) Intracellular pH. Physiol Rev 61:296–434

    PubMed  CAS  Google Scholar 

  • Saimi Y (1986) Calcium-dependent sodium currents in Paramecium Mutational manipulations and effects of hyper- and depolarization. J Membr Biol 92:227–236

    Article  CAS  Google Scholar 

  • Saimi Y, Kung C (1980) A Ca-induced Na-current in Paramecium. J Exp Biol 88:305–325

    PubMed  CAS  Google Scholar 

  • Saimi Y, Kung C (1982) Are ions involved in the gating of calcium channels? Science 218:153–156

    Article  PubMed  CAS  Google Scholar 

  • Saimi Y, Hinrichsen RD, Forte M, Kung C (1983) Mutant analysis shows that the Ca2+-induced K+ current shuts off one type of excitation in Paramecium. Proc Natl Acad Sci USA 80:5112–5116

    Article  PubMed  CAS  Google Scholar 

  • Salkow L (1983) Drosophila mutants reveal two components of fast outward current. Nature (London) 302:249–251

    Article  Google Scholar 

  • Satow Y (1978) Internal calcium concentration and potassium permeability in Paramecium. J Neurobiol 9:81–91

    Article  PubMed  CAS  Google Scholar 

  • Satow Y, Kung C (1977) A regenerative hyperpolarization in Paramecium. J Comp Physiol 119:99–110

    Article  CAS  Google Scholar 

  • Satow Y, Kung C (1979) Voltage-sensitive Ca-channels and the transient inward current in Paramecium tetraurelia. J Exp Biol 78:149–161

    CAS  Google Scholar 

  • Satow Y, Kung C (1980a) Membrane currents of pawn mutants of the pwA group in Paramecium tetraurelia. J Exp Biol 80:57–71

    Google Scholar 

  • Satow Y, Kung C (1980b) Ca-induced K+-outward current in Paramecium tetraurelia. J Exp Biol 88:293–303

    CAS  Google Scholar 

  • Satow Y, Murphy AD, Kung C (1983) The ionic basis of the depolarizing mechanoreceptor potential of Paramecium tetraurelia. J Exp Biol 103:253–264

    CAS  Google Scholar 

  • Soest H (1937) Dressurversuche mit Ciliaten und rhabdocoelen Turbellarien. Z Vergl Physiol 24:720–748

    Article  Google Scholar 

  • Tawada K, Oosawa F (1972) Responses of Paramecium to temperature change. J Protozool 19:53–57

    PubMed  CAS  Google Scholar 

  • Tillotson D (1979) Inactivation of Ca conductance dependent on entry of Ca ions in molluscan neurons. Proc Natl Acad Sci USA 77:1497–1500

    Article  Google Scholar 

  • Umrath K (1930) Potentialmessungen an Nitella mucronata mit besonderer Berücksichtigung der Erregungserscheinungen. Protoplasma 9:576–597

    Article  Google Scholar 

  • Voß HJ, Machemer H (1987) Das Experiment: Können Einzeller lernen? Prüfung am klassischen Konditionierungsexperiment. BIUZ 17:122–127

    Article  Google Scholar 

  • Wood DC (1975) Protozoa as models of stimulus transduction. In: Eisenstein EM (ed) Aneural organisms in neurobiology. Advances in behavioral biology, vol 13. Plenum, New York, pp 5–23

    Google Scholar 

  • Wood DC (1982) Membrane permeabilities determining resting, action and mechanoreceptor potentials in Stentor coeruleus. J Comp Physiol 146:537–550

    Article  CAS  Google Scholar 

  • Yamaguchi T (1960) Studies on the modes of ionic behavior across the ectoplasmic membrane of Paramecium. I. Electric potential differences measured by the intracellular microelectrode. J Fac Sci Univ Tokyo, Sect IV, 8:573–591

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Machemer, H. (1998). Electrophysiology. In: Görtz, HD. (eds) Paramecium. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73086-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73086-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73088-7

  • Online ISBN: 978-3-642-73086-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics