Enhanced Production of Secondary Substances: Addition of Artificial Accumulation Sites to Cultures

  • R. Beiderbeck
  • B. Knoop
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 4)


Different plant species are collected or grown to make use of their secondary substances, e. g., flavors, perfume bases, drugs, or insecticides. The supply of these plants and their products is obviously subject to heavy fluctuations due to climatic irregularities, exhaustive collection, and political upheavals. To guarantee a steady supply, about 25 years ago researchers started trials to produce secondary substances by means of cell cultures (Reinhard 1975; Zenk 1979; Bisson 1983; Collin and Watts 1983). Up to the present, however, the results of continued experimentation are more or less disappointing. By 1982 only about 30 compounds were known to be accumulated by cell cultures in amounts similar to or even greater than those stored by the intact plants, and very few have been added since (Staba 1985). Most cell cultures are nonproducers or yield very limited amounts of secondary substances (Teuscher 1973). The mechanisms of control are far from being understood (Zenk 1982) and the reasons for these failures have been extensively discussed (Teuscher 1973; Berlin 1983).


Cell Suspension Culture Chlorogenic Acid Activate Charcoal Secondary Substance Coniferyl Aldehyde 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alfermann W, Reinhard E (1971) Isolierung anthocyanhaltiger und anthocyanfreier Gewebestämme von Daucus carota: Einfluß von Auxinen auf die Anthocyanbildung. Experientia 27:353–354.CrossRefGoogle Scholar
  2. Anon (1984/85) XAD. Feinbiochemica für die Forschung. Catalogue of Serva, Heidelberg.Google Scholar
  3. Becker H, Herold S (1983) RP-8 als Hilfsphase zur Akkumulation von Valepotriaten aus Zeilsuspensionskulturen von Valeriana wallichii. Planta Med 49:191–192.PubMedCrossRefGoogle Scholar
  4. Beiderbeck R (1982) Zweiphasenkultur — ein Weg zur Isolierung lipophiler Substanzen aus pflanzlichen Suspensionskulturen. Z Pflanzenphysiol 108:27–30.Google Scholar
  5. Beiderbeck R, Knoop B (1984) Ein Adsorbens als Speicher für Phytohormone in einer pflanzlichen Suspensionskultur. Z Naturforsch 39c:45–49.Google Scholar
  6. Berlin J (1983) Naturstoffe aus pflanzlichen Zellkulturen. Chiu Z 17:77–84.Google Scholar
  7. Berlin J, Witte L (1981) Effects of glyphosate on shikimic acid accumulation in tobacco cell cultures with low and high yields of cinnamoyl putrescines. Z Naturforsch 36c:210–214.Google Scholar
  8. Berlin J, Witte L, Schubert W, Wray V (1984) Determination and quantification of monoterpenoids secrected into the medium of cell cultures of Thuja occidentalis. Phytochemistry 23:1277–1279.CrossRefGoogle Scholar
  9. Bisson W (1983) Untersuchungen zur Bildung, Zusammensetzung und Akkumulation von ätherischem Öl in Zellkulturen von Matricaria chamomilla L. unter besonderer Berücksichtigung systemfremder Akkumulationsorte (Zweiphasensystem). Ph D Thesis, Univ Heidelberg.Google Scholar
  10. Bisson W, Beiderbeck R, Reichling J (1983) Die Produktion ätherischer Öle durch Zellsuspensionen der Kamille in einem Zweiphasensystem. Planta Med 47:164–168.PubMedCrossRefGoogle Scholar
  11. Brindle PA, Kuhn PJ, Threlfall DR (1983) Accumulation of phytoalexins in potato cell suspension cultures. Phytochemistry 22:2719–2721.CrossRefGoogle Scholar
  12. Collin HA, Watts M (1983) Flavour production in culture. In: Evans DA, Sharp WR, Ammirato PV, Yamada Y (eds) Handbook of plant cell culture, vol 1. Macmillan, New York London, pp 729–747.Google Scholar
  13. Constantin MJ, Henke RR, Mansur MA (1977) Effect of activated charcoal on callus growth and shoot organogenesis in tobacco. In Vitro 13:293–296.PubMedCrossRefGoogle Scholar
  14. Denffer D von, Ehrendorfer F, Maegdefrau K, Ziegler H (1978) Lehrbuch der Botanik, 31st edn. Gustav Fischer, Stuttgart.Google Scholar
  15. Deus-Neumann B, Zenk MH (1984) Instability of alkaloid production in Catharanthus roseus cell suspension cultures. Planta Med 50:427–431.PubMedCrossRefGoogle Scholar
  16. Eilert U, Kurz WGW, Constabel F (1985) Stimulation of sanguinarine accumulation in Papaver somniferum cell cultures by fungal elicitors. J Plant Physiol 119:65–76.Google Scholar
  17. Fritzemeier KH, Rolfs CH, Pfau J, Kindl H (1983) Action of UV-C on stilbene formation in callus of Arachis hypogaea. Planta 159:25–29.CrossRefGoogle Scholar
  18. Fukui H, Yoshikawa N, Tabata M (1983) Induction of shikonin formation by agar in Lithospermum erythrorhizon cell suspension cultures. Phytochemistry 22:2451–2453.CrossRefGoogle Scholar
  19. Knoop B, Beiderbeck R (1983) Adsorbenskultur — ein Weg zur Steigerung der Sekundärstoffproduktion in pflanzlichen Suspensionskulturen. Z Naturforsch 38c:484–486.Google Scholar
  20. Knoop B, Beiderbeck R (1985) Adsorbent filter — a tool for the selection of plant suspension culture cells producing secondary substances. Z Naturforsch 40c:297–300.Google Scholar
  21. Luckner M (1980) Expression and control of secondary metabolism. In: Bell EA, Charlwood BV (eds) Encyclopedia of plant physiology, New Ser, vol 8. Springer, Berlin Heidelberg New York, pp 22–63.Google Scholar
  22. Maisch R (1985) Steigerung der Sekundärstoffproduktion in pflanzlichen Zellkulturen durch reversible Adsorption. Diplomarbeit, Univ Heidelberg.Google Scholar
  23. Mattson JS, Mark HB (1971) Activated carbon. Dekker, New York.Google Scholar
  24. Mbanaso ENA, Roscoe DH (1982) Alginate: an alternative to agar in plant protoplast culture. Plant Sci Lett 25:61–66.CrossRefGoogle Scholar
  25. Nagel M, Reinhard E (1975) Das ätherische Öl der Kalluskulturen von Ruta graveolens. II. Physiologie zur Bildung des ätherischen Öles. Planta Med 27:264–274.CrossRefGoogle Scholar
  26. Norton RA, Towers GHN (1985) Synthesis of polyacetylenes in tumor callus of Bidens alba. J Plant Physiol 120:273–283.Google Scholar
  27. Ogino T, Hiraoka N, Tabata M (1978) Selection of high nicotine-producing cell lines of tobacco callus by single-cell cloning. Phytochemistry 17:1907–1910.CrossRefGoogle Scholar
  28. Reichling J, Beiderbeck R, Becker H (1979) Vergleichende Untersuchungen über sekundäre Inhaltsstoffe bei Pflanzentumoren, Blüte, Kraut und Wurzel von Matricaria chamomilla L. Planta Med 36:322–332.CrossRefGoogle Scholar
  29. Reinhard E (1975) Möglichkeiten zur Verwendung von Gewebekulturen in der Arzneipflanzenforschung. Planta Med (Suppl):1-4.Google Scholar
  30. Reinhard E, Corduan G, Volk OH (1968) Über Gewebekulturen von Ruta graveolens. Planta Med 1:8–16.CrossRefGoogle Scholar
  31. Sato F, Yamada Y (1984) High berberine-producing cultures of Coptis japonica cells. Phytochemistry 23:281–285.CrossRefGoogle Scholar
  32. Staba EJ (1985) Milestones in plant tissue culture systems for the production of secondary products. J Nat Prod 48:203–209.CrossRefGoogle Scholar
  33. Stickland RG, Sunderland N (1972) Production of anthocyanins, flavonols and chlorogenic acids by cultured callus tissues of Haplopappus gracilis. Ann Bot (London) 36:443–457.Google Scholar
  34. Teuscher E (1973) Probleme der Produktion sekundärer Pflanzenstoffe mit Hilfe von Zellkulturen. Pharmazie 28:6–18.PubMedGoogle Scholar
  35. Thumann J, Knoop B, Beiderbeck R (1987) The separation of two cell strains with different secondary substance production by means of an improved adsorbent filter technique Biologia Plantarum 29(6):422–424.CrossRefGoogle Scholar
  36. Weiler EW, Zenk MH (1976) Radioimmunoassay for the determination of digoxin and related compounds in Digitalis lanata. Phytochemistry 15:1537–1545.CrossRefGoogle Scholar
  37. Zenk MH (1979) Produktion industriell interessanter Naturstoffe durch pflanzliche Zellkulturen. In: Barz W (ed) Pflanzliche Zellkulturen und ihre Bedeutung für Forschung und Anwendung. BMFT Bonn, pp 39–46.Google Scholar
  38. Zenk MH (1982) Pflanzliche Zellkulturen in der Arzneimittelforschung. Naturwissenschaft 69:534–536.CrossRefGoogle Scholar
  39. Zenk MH, El-Shagi H, Schulte U (1975) Anthraquinone production by cell suspension cultures of Morinda citrifolia. Planta Med (Suppl):79-101.Google Scholar
  40. Zenk MH, El-Shagi H, Arens H, Stoeckigt J, Weiler E, Deus B (1977) Formation of the indole alkaloids serpentine and ajmalicine in cell suspension cultures of Catharanthus roseus. In Barz W, Reinhard E, Zenk MH (eds) Plant tissue culture and its biotechnological application. Springer, Berlin Heidelberg New York, pp 27–43.CrossRefGoogle Scholar
  41. Zenk MH, Schulte U, El-Shagi H (1984) Regulation of anthraquinone formation by phenoxyacetic acids in Morinda cell cultures. Naturwissenschaft 71:266.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • R. Beiderbeck
  • B. Knoop
    • 1
  1. 1.Botanisches Institut der Universität HeidelbergHeidelbergGermany

Personalised recommendations