Skip to main content

Medicinal, Aromatic, and Industrial Materials from Plants

  • Chapter
Medicinal and Aromatic Plants I

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 4))

Abstract

Higher plants are solar-powered biochemical factories which manufacture what they need to survive (both primary and secondary metabolites) from air, water, minerals, and their energy from sunlight. Many species of higher plants biosyn-thesize and accumulate extractable organic substances in quantities sufficient to be economically useful as chemical feedstocks or as raw materials for various scientific, technological, and commercial applications. Natural substances are employed, either directly or indirectly, by a large number of industries, and natural plant products (phytochemicals) figure prominently in several of these. For example, phytochemicals are utilized to a large extent by the pharmaceutical, cosmetics, food, agrochemical, and chemurgic industries. Economically important plants serve as irreplaceable sources of industrial oils (both volatile and fixed), flavors and fragrances, resins (e.g., rosin and tall oil), gums, natural rubber, waxes, saponins and other surfactants, dyes, pharmaceuticals, pesticides (e.g., insecticides and rodenticides), and many specialty products (Uphof 1968; Leung 1980; Rowe 1980; Goldstein 1981; Pryde and Doty 1981; Tyler et al. 1981; Fowler 1982; Office of Technology Assessment (OTA) 1983; Trease and Evans 1983; Balandrin et al. 1985; Bates 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam G, Marquardt V (1986) Brassinosteroids. Phytochemistry 25:1787–1799.

    Article  CAS  Google Scholar 

  • Aharonowitz Y, Cohen G (1981) The microbiological production of Pharmaceuticals Sci Am 245(3):140–152.

    Article  PubMed  CAS  Google Scholar 

  • Ahmed S, Grainge M (1986) Potential of the neem tree (Azadirachta indica) for pest control and rural development. Econ Bot 40:201–209.

    Article  Google Scholar 

  • Aikman L (1974) Nature’s gifts to medicine Natl Geogr 146(3):420–440.

    Google Scholar 

  • Aikman L (1977) Nature’s healing arts: from folk medicine to modern drugs. Natl Geogr Soc, Washington, DC.

    Google Scholar 

  • Ames BN (1983) Dietary carcinogens and anticarcinogens. Science 221:1256–1264.

    Article  PubMed  CAS  Google Scholar 

  • Anon. (1984) Forskolin: possible multi-purpose drug. Am Pharm NS24(12):30.

    Google Scholar 

  • Anon. (1985) Early optimism over Marinol sours. Am Pharm NS25(12):10.

    Google Scholar 

  • Applezweig N (1977) Dioscorea — the pill crop. In: Seigler DS (ed) Crop resources. Academic Press, London New York, pp 149–163.

    Google Scholar 

  • Applezweig N (1980) Steroid drugs from botanical sources: future prospects. In: Campos-López E (ed) Renewable resources: a systematic approach. Academic Press, London New York, pp 369–378.

    Google Scholar 

  • Armstrong DW, Yamazaki H (1986) Natural flavours production: a biotechnological approach Trends Biotechnol 4(10):264–268.

    Article  CAS  Google Scholar 

  • Bajaj YPS (1986) Biotechnology in agriculture and forestry, vol 2. Crops I. Springer, Berlin Heidelberg New York Tokyo.

    Google Scholar 

  • Bajaj YPS, Furmanowa M, Olszowska O (1988) Biotechnology of micropropagation of medicinal and aromatic plants. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 4. Medicinal and aromatic plants. (Chap I. 3, this Vol.).

    Google Scholar 

  • Balandrin MF, Kloeke JA, Wurtele ES, Bollinger WH (1985) Natural plant chemicals: sources of industrial and medicinal materials. Science 228:1154–1160.

    Article  PubMed  CAS  Google Scholar 

  • Barz W, Ellis BE (1981) Potential of plant cell cultures for pharmaceutical production. In: Beal JL, Reinhard E (eds) Natural products as medicinal agents. Hippokrates, Stuttgart, pp 471–507.

    Google Scholar 

  • Bates DM (1985) Plant utilization: patterns and prospects. Econ Bot 39:241–265.

    Article  Google Scholar 

  • Beal JL, Reinhard E (eds) (1981) Natural products as medicinal agents. Hippokrates, Stuttgart.

    Google Scholar 

  • Bell EA, Charlwood BV (eds) (1980) Secondary plant products. In: Encyclopedia of plant physiology, NS, vol 8. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Berlin J (1984) Plant cell cultures — a future source of natural products? Endeavour NS 8:5–8.

    Article  CAS  Google Scholar 

  • Block E (1985) The chemistry of garlic and onions Sci Am 252(3):114–119.

    Article  PubMed  CAS  Google Scholar 

  • Block E, Ahmad S, Jain MK, Crecely RW, Apitz-Castro R, Cruz MR (1984) (E, Z)-Ajoene: a potent antithrombotic agent from garlic. J Am Chem Soc 106:8295–8296.

    Article  CAS  Google Scholar 

  • Bohonos N, Piersma HD (1966) Natural products in the pharmaceutical industry. BioScience 16:706–714, 729.

    Article  CAS  Google Scholar 

  • Bowers WS (1982) Toxicology of the precocenes. In: Coates JR (ed) Insecticide mode of action. Academic Press, London New York, pp 403–427.

    Google Scholar 

  • Bowers WS, Ohta T, Cleere JS, Marsella PA (1976) Discovery of insect antijuvenile hormones in plants. Science 193:542–547.

    Article  PubMed  CAS  Google Scholar 

  • Cabanillas F (1979) Etoposide. Drugs Fut 4:257–261.

    Google Scholar 

  • Carlson AW (1986) Ginseng: America’s botanical drug connection to the Orient. Econ Bot 40:233–249.

    Article  Google Scholar 

  • Cassady JM, Douros JD (eds) (1980) Anticancer agents based on natural product models. Academic Press, London New York.

    Google Scholar 

  • Collinge M (1986) Ways and means to plant secondary metabolites Trends Biotechnol 4(12):299–301.

    Article  Google Scholar 

  • Compadre CM, Pezzuto JM, Kinghorn AD, Kamath SK (1985) Hernandulcin: an intensely sweet compound discovered by review of ancient literature. Science 227:417–419.

    Article  PubMed  CAS  Google Scholar 

  • Crosby DG (1966) Natural pest control agents. In: Crosby DG (ed) Natural pest control agents. Am Chem Soc, Washington, DC, pp 1–16 (Adv Chem Ser 53).

    Chapter  Google Scholar 

  • Curtin ME (1983) Harvesting profitable products from plant tissue culture. Bio/Technology 1:649–657.

    Article  Google Scholar 

  • de Souza NJ, Dohadwalla AN, Reden J (1983) Forskolin: a labdane diterpenoid with antihypertensive, positive inotropic, platelet aggregation inhibitory, and adenylate cyclase activating properties Med Res Rev 3(2):201–219.

    Article  PubMed  Google Scholar 

  • DiCosmo F, Misawa M (1985) Eliciting secondary metabolism in plant cell cultures Trends Biotechnol 3(12):318–322.

    Article  CAS  Google Scholar 

  • DiCosmo F, Tallevi SG (1985) Plant cell cultures and microbial insult: interactions with biotechnological potential Trends Biotechnol 3(5):110–111.

    Article  Google Scholar 

  • DiCosmo F, Towers GHN (1984) Stress and secondary metabolism. Rec Adv Phytochem 18:97–175.

    CAS  Google Scholar 

  • Djerassi C (1966) Steroid oral contraceptives. Science 151:1055–1061.

    Article  PubMed  CAS  Google Scholar 

  • Djerassi C, Shih-Coleman C, Diekman J (1974) Insect control of the future: operational and policy aspects. Science 186:596–607.

    Article  PubMed  CAS  Google Scholar 

  • Duke JA, Balandrin MF, Klocke JA (1985) Medicinal plants [letter]. Science 229:1036–1038.

    PubMed  CAS  Google Scholar 

  • Edens L, Wel H van der (1985) Microbial synthesis of the sweet-tasting plant protein thaumatin. Trends Biotechnol 3:61–64.

    Article  CAS  Google Scholar 

  • Edens L, Bom I, Ledeboer AM, Maat J, Toonen MY, Visser C, Verrips CT (1984) Synthesis and processing of the plant protein thaumatin in yeast. Cell 37:629–633.

    Article  PubMed  CAS  Google Scholar 

  • Evans FJ (ed) (1986) Naturally occurring phorbol esters. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Evans FJ, Taylor SE (1983) Pro-inflammatory, tumour-promoting and anti-tumour diterpenes of the plant families Euphorbiaceae and Thymelaeaceae. Prog Chem Org Nat Prod 44:1–99.

    CAS  Google Scholar 

  • Eveleigh DE (1981) The microbiological production of industrial chemicals Sci Am 245(3):154–178.

    Article  CAS  Google Scholar 

  • Farasworth NR (1966) Biological and phytochemical screening of plants. J Pharm Sci 55:225–276.

    Article  Google Scholar 

  • Farnsworth NR (1973) Importance of secondary plant constituents as drugs. In: Miller LP (ed) Phytochemistry, vol 3. Van Nostrand Reinhold, New York, pp 351–380.

    Google Scholar 

  • Farnsworth NR (1977) The current importance of plants as a source of drugs. In: Seigler DS (ed) Crop resources. Academic Press, London New York, pp 61–73.

    Google Scholar 

  • Farnsworth NR (1984a) How can the well be dry when it is filled with water? Econ Bot 38:4–13.

    Article  Google Scholar 

  • Farnsworth NR (1984b) The role of medicinal plants in drug development. In: Krogsgaard-Larsen P, Christensen SB, Kofod H (eds) Natural products and drug development. Munksgaard, Copenhagen (Alfred Benzon Symp 20), pp 17–30.

    Google Scholar 

  • Farnsworth NR, Bingel AS (1977) Problems and prospects of discovering new drugs from higher plants by pharmacological screening. In: Wagner H, Wolff P (eds) New natural products and plant drugs with pharmacological, biological or therapeutical activity. Springer, Berlin Heidelberg New York, pp 1–22.

    Chapter  Google Scholar 

  • Farnsworth NR, Morris RW (1976) Higher plants — the sleeping giant of drug development. Am J Pharm 148:46–52.

    PubMed  CAS  Google Scholar 

  • Farnsworth NR, Soejarto DD (1985) Potential consequence of plant extinction in the United States on the current and future availability of prescription drugs. Econ Bot 39:231–240.

    Article  Google Scholar 

  • Fowler MW (1980) New approaches to plants as sources of medicinal compounds. Pharm J 224:39–40.

    CAS  Google Scholar 

  • Fowler MW (1982) Plant-cell cultures: fact and fantasy. Biochem Soc Trans 11:23–28.

    Google Scholar 

  • Foye WO (ed) (1974) Principles of medicinal chemistry. Lea & Febiger, Philadelphia.

    Google Scholar 

  • Fraenkel GS (1959) The raison d’être of secondary plant substances. Science 129:1466–1470.

    Article  PubMed  CAS  Google Scholar 

  • Frei E III (1982) The national cancer chemotherapy program. Science 217:600–606.

    Article  PubMed  Google Scholar 

  • Fuller KW, Gallon JR (eds) (1985) Plant products and the new technology. Clarendon, Oxford (Annu Proc Phytochem Soc Eur, vol 26).

    Google Scholar 

  • Geissman TA, Crout DHG (1969) Organic chemistry of secondary plant metabolism. Freeman, Cooper, San Francisco.

    Google Scholar 

  • Gilbert B (1977) Natural product derivatives in tropical insect and parasite control. In: Marini-Bettolo GB (ed) Natural products and the protection of plants. Elsevier, New York, pp 225–246.

    Google Scholar 

  • Goldstein A, Aronow L, Kaiman SM (1974) Principles of drug action: the basis of pharmacology, 2nd edn. John Wiley & Sons, New York, pp 741–761.

    Google Scholar 

  • Goldstein IS (ed) (1981) Organic chemicals from biomass. CRC, Boca Raton, FL.

    Google Scholar 

  • Gottlieb OR, Mors WB (1980) Potential utilization of Brazilian wood extractives. J Agric Food Chem 28:196–215.

    Article  PubMed  CAS  Google Scholar 

  • Green MB, Hedin PA (eds) (1986) Natural resistance of plants to pests: roles of allelochemicals. Am Chem Soc, Washington, DC (ACS Symp Ser 296).

    Google Scholar 

  • Gund P, andose JD, Rhodes JB, Smith GM (1980) Three-dimensional molecular modeling and design. Science 208:1425–1431.

    Article  PubMed  CAS  Google Scholar 

  • Gysin H (1954) Ãœber einige neue Insektizide. Chimia 8:205–220.

    CAS  Google Scholar 

  • Harborne JB (ed) (1972) Phytochemical ecology. Academic Press, London New York.

    Google Scholar 

  • Harborne JB (ed) (1978) Biochemical aspects of plant and animal coevolution. Academic Press, London New York.

    Google Scholar 

  • Harborne JB (1982) Introduction to ecological biochemistry, 2nd edn. Academic Press, London New York.

    Google Scholar 

  • Hecker E (1977) New toxic, irritant and cocarcinogenic diterpene esters from Euphorbiaceae and from Thymelaeaceae. Pure Appl Chem 49:1423–1431.

    Article  CAS  Google Scholar 

  • Hecker E, Schmidt R (1974) Phorbolesters — the irritants and cocarcinogens of Croton tiglium L. Fortschr Chem Org Naturst 31:377–467.

    Article  PubMed  CAS  Google Scholar 

  • Hedin PA (ed) (1983) Plant resistance to insects. Am Chem Soc, Washington, DC (ACS Symp Ser 208).

    Google Scholar 

  • Heinstein PF (1985) Future approaches to the formation of secondary natural products in plant cell suspension cultures. J Nat Prod 48:1–9.

    Article  CAS  Google Scholar 

  • Heywood VH (1973) The role of chemistry in plant systematics. Pure Appl Chem 34:355–375.

    Article  CAS  Google Scholar 

  • Hinman CW (1984) New crops for arid lands. Science 225:1445–1448.

    Article  PubMed  CAS  Google Scholar 

  • Horwitz SB, Loike JD (1977) A comparison of the mechanism of action of VP-16-213 and podophyllotoxin. Lloydia 40:82–89.

    PubMed  CAS  Google Scholar 

  • Hussar DA (1984) New drugs of 1983. Am Pharm NS 24(3):23–40.

    Google Scholar 

  • Issell BF, Crooke ST (1979) Etoposide (VP-16–213). Cancer Treat Rev 6:107–124.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson M (1958) Insecticides from plants, a review of the literature, 1941–1953. US Dep Agric Agric Res Serv, Washington, DC (Agric Handb 154).

    Google Scholar 

  • Jacobson M (1975) Insecticides from plants, a review of the literature, 1954–1971. US Dep Agric Agric Res Serv, Washington, DC (Agric Handb 461).

    Google Scholar 

  • Jacobson M (1982) Plants, insects, and man — their interrelationships. Econ Bot 36:346–354.

    Article  CAS  Google Scholar 

  • Kemp MS, Burden RS (1986) Phytoalexins and stress metabolites in the sapwood of trees. Phytochemistry 25:1261–1269.

    Article  CAS  Google Scholar 

  • Kinghorn AD (1979) Cocarcinogenic irritant Euphorbiaceae. In: Kinghorn AD (ed) Toxic plants. Columbia Univ Press, New York, pp 137–159.

    Google Scholar 

  • Kinghorn AD, Compadre CM (1985) Naturally occurring intense sweeteners Pharm Int 6(8):201–204.

    CAS  Google Scholar 

  • Kinghorn AD, Soejarto DD (1986) Sweetening agents of plant origin. CRC Crit Rev Plant Sci 4:79–120.

    Article  CAS  Google Scholar 

  • Klausner A (1985) Common scents for biotech? Bio/Technology 3:534–538.

    Article  Google Scholar 

  • Klayman DL (1985) Qinghaosu (artemisinin): an antimalarial drug from China. Science 228:1049–1055.

    Article  PubMed  CAS  Google Scholar 

  • Klayman DL, Lin AJ, Acton N, Scovill JP, Hoch JM, Milhous WK, Theoharides AD, Dobek AS (1984) Isolation of artemisinin (qinghaosu) from Artemisia annua growing in the United States. J Nat Prod 47:715–717.

    Article  PubMed  CAS  Google Scholar 

  • Klocke JA (1982 Natural plant products as sources and models of insect control agents. Thesis, Univ CA, Berkeley.

    Google Scholar 

  • Klocke JA (1987) Natural plant compounds useful in insect control. In: Waller GR (ed) Allelochemicals: role in agriculture and forestry. Am Chem Soc, Washington, DC (ACS Symp Ser 330), pp 396–415.

    Chapter  Google Scholar 

  • Larsen K, Holm-Nielsen LB (eds) (1979 Tropical botany. Academic Press, London New York.

    Google Scholar 

  • Leung AY (1980) Encyclopedia of common natural ingredients used in food, drugs, and cosmetics. John Wiley & Sons (Wiley-Interscience), New York.

    Google Scholar 

  • Levy LW (1981) A large-scale application of tissue culture: the mass propagation of pyrethrum clones in Ecuador. Environ Exp Bot 21:389–395.

    Article  Google Scholar 

  • Lewis WH, Elvin-Lewis MPF (1977) Medical botany. John Wiley & Sons (Wiley-Interscience), New York.

    Google Scholar 

  • Luckner M (1984) Secondary metabolism in micro-organisms, plants and animals, 2nd edn. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Mann J (1978) Secondary metabolism. Univ Press, Oxford.

    Google Scholar 

  • Mclndoo NE (1945) Plants of possible insecticidal value, a review of the literature up to 1941. US Dep Agric Agric Res Admin, Bur Entomol Plant Quarant, Washington, DC (E-661).

    Google Scholar 

  • Mechoulam R (ed) (1986) Cannabinoids as therapeutic agents. CRC, Boca Raton, FL.

    Google Scholar 

  • Meinwald J, Prestwich GD, Nakanishi K, Kubo I (1978) Chemical ecology: studies from East Africa. Science 199:1167–1173.

    Article  PubMed  CAS  Google Scholar 

  • Menn JJ (1980) Contemporary frontiers in chemical pesticide research. J Agric Food Chem 28:2–8.

    Article  CAS  Google Scholar 

  • Modell W, Lansing A (1972) Drugs. Time-Life, New York, p 138.

    Google Scholar 

  • Morris P, Scragg AH, Stafford A, Fowler MW (eds) (1986) Secondary metabolism in plant cell cultures. Cambridge Univ Press, New York.

    Google Scholar 

  • Muller CH (1970) Phytotoxins as plant habitat variables. Rec Adv Phytochem 3:105–121.

    Google Scholar 

  • Muller CH, Chou CH (1972) Phytotoxins: an ecological phase of phytochemistry. In: Harborne JB (ed) Phytochemical ecology. Academic Press, London New York, pp 201–216.

    Google Scholar 

  • Myers N (1979) The sinking ark. Pergamon, Oxford New York.

    Google Scholar 

  • Myers N (1980) Conversion of tropical moist forests. Natl Acad Sci, Washington, DC.

    Google Scholar 

  • Myers N (1984a) Wild genetic resources. Impact Sci Soc (UNESCO) 34:327–333.

    Google Scholar 

  • Myers N (1984b) The primary source: tropical forests and our future. Norton, New York.

    Google Scholar 

  • Nair MSR, Acton N, Klayman DL, Kendrick K, Basile DV, Mante S (1986) Production of artemisinin in tissue cultures of Artemisia annua. J Nat Prod 49:504–507.

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi K (1975) Structure of the insect antifeedant azadirachtin. Rec Adv Phytochem 9:283–298.

    CAS  Google Scholar 

  • Nakanishi K (1977) Insect growth regulators from plants. In: Marini-Bettolo GB (ed) Natural products and the protection of plants. Elsevier, New York, pp 185–210.

    Google Scholar 

  • Nakanishi K (1980) Insect antifeedants from plants. In: Locke M, Smith DS (eds) Insect biology in the future. Academic Press, London New York, pp 603–611.

    Google Scholar 

  • Nakanishi K (1982) Recent studies on bioactive compounds from plants. J Nat Prod 45:15–26.

    Article  CAS  Google Scholar 

  • Neumann KH, Barz W, Reinhard E (eds) (1985) Primary and secondary metabolism of plant cell cultures. Springer, Berlin Heidelberg New York Tokyo.

    Google Scholar 

  • Office of Technology Assessment (OTA) (1983) Plants: the potentials for extracting protein, medicines, and other useful chemicals. US Gov Print Off, Washington, DC (US Congr, OTA-BP-23).

    Google Scholar 

  • Office of Technology Assessment (OTA) (1984a) Commercial biotechnology: an international analysis. US Gov Print Off, Washington, DC (US Congr, OTA-BA-218).

    Google Scholar 

  • Office of Technology Assessment (OTA) (1984b) Technologies to sustain tropical forest resources. US Gov Print Off, Washington, DC (US Congr, OTA-F-214).

    Google Scholar 

  • Parker PJ, Coussens L, Totty N, Rhee L, Young S, Chen E, Stabel S, Waterfield MD, Ullrich A (1986) The complete primary structure of protein kinase C — the major phorbol ester receptor. Science 233:853–859.

    Article  PubMed  CAS  Google Scholar 

  • Phillipson JD (1979) The search for new drugs from plants. Pharm J 222:310–312.

    CAS  Google Scholar 

  • Pryde EH, Doty HO, Jr (1981) World fats and oils situation. In: Pryde EH, Princen LH, Mukherjee KD (eds) New sources of fats and oils. Am Oil Chem Soc, Champaign, ILL, pp 3–14.

    Google Scholar 

  • Putnam AR (1983) Allelopathic chemicals: nature’s herbicides in action Chem Eng News 61(14):34–45.

    Article  CAS  Google Scholar 

  • Putnam AR (1985a) Address to the division of agricultural and food chemistry. Am Chem Soc. 190th ACS Natl Meet Sept 1985, Chicago, ILL.

    Google Scholar 

  • Putnam AR (1985b) Allelopathic research in agriculture: past highlights and potential. In: Thompson AC (ed) The chemistry of allelopathy: biochemical interactions among plants. Am Chem Soc, Washington, DC (ACS Symp Ser 268), pp 1–8.

    Chapter  Google Scholar 

  • Radice PA, Bunn PA, Jr, Ihde DC (1979) Therapeutic trials with VP-16–213 and VM-26: active agents in small cell lung cancer, non-Hodgkin’s lymphomas, and other malignancies. Cancer Treat Rep 63:1231–1240.

    PubMed  CAS  Google Scholar 

  • Radwanski SA, Wickens GE (1981) Vegetative fallows and potential value of the neem tree (Azadirachta indica) in the tropics. Econ Bot 35:398–414.

    Article  CAS  Google Scholar 

  • Reis S von, Lipp FJ, Jr (1982) New plant sources for drugs and foods from the New York Botanical Garden Herbarium. Harvard Univ Press, Cambridge, MASS.

    Google Scholar 

  • Reis Altschul S von (1973) Drugs and foods from little-known plants: notes in Harvard University herbaria. Harvard Univ Press, Cambridge, MASS.

    Google Scholar 

  • Reis Altschul S von (1977) Exploring the herbarium Sci Am 236(5):96–104.

    Article  Google Scholar 

  • Rice EL (1983) Pest control with nature’s chemicals. Univ Oklahoma Press, Norman.

    Google Scholar 

  • Rice EL (1984) Allelopathy, 2nd edn. Academic Press, London New York.

    Google Scholar 

  • Robinson T (1983) The organic constituents of higher plants, 5th edn. Cordus, Amherst, MASS.

    Google Scholar 

  • Roche EB (ed) (1977) Design of biopharmaceutical properties through prodrugs and analogs. Am Pharm Assoc Acad Pharm Sci, Washington, DC.

    Google Scholar 

  • Rosenthal GA, Janzen DH (eds) (1979) Herbivores: their interaction with secondary plant metabolites. Academic Press, London New York.

    Google Scholar 

  • Rowe JW (1980) Symposium on extractives: utilization problem or fine chemical resource? J Agric Food Chem 28:169–170.

    Article  Google Scholar 

  • Sandberg F, Bruhn JG (1972) Pharmacognostic screening of plant materials. Bot Notiser 125:370–378.

    Google Scholar 

  • Saxena RC (1983) Naturally occurring pesticides and their potential. In: Shemilt LW (ed) Chemistry and world food supplies: the new frontiers. Pergamon, Oxford New York, pp 143–161.

    Google Scholar 

  • Schmeltz I (1971) Nicotine and other tobacco alkaloids. In: Jacobson M, Crosby DG (eds) Naturally occurring insecticides. Dekker, New York, pp 99–136.

    Google Scholar 

  • Schmutterer H, Ascher KRS, Rembold H (eds) (1980) Natural pesticides from the neem tree (Azadirachta indica A. Juss) Germ Ag Tech Coop, Eschborn, FRG.

    Google Scholar 

  • Schoonhoven LM (1972) Secondary plant substances and insects. Rec Adv Phytochem 5:197–224.

    CAS  Google Scholar 

  • Schoonhoven LM (1982) Biological aspects of antifeedants. Entomol Exp Appl 31:57–69.

    Article  CAS  Google Scholar 

  • Scragg AH (1986) The economics of mass cell culture. In: Morris P, Scragg AH, Stafford A, Fowler MW (eds) Secondary metabolism in plant cell cultures. Cambridge Univ Press, Cambridge London New York, pp 202–207.

    Google Scholar 

  • Secoy DM, Smith AE (1983) Use of plants in control of agricultural and domestic pests. Econ Bot 37:28–57.

    Article  Google Scholar 

  • Shaik F (1986) Scientists study ancient herbs. Chem Week 139(8):16.

    Google Scholar 

  • Shuler ML (1981) Production of secondary metabolites from plant tissue culture — problems and prospects. Ann NY Acad Sci 369:65–79.

    Article  CAS  Google Scholar 

  • Shuler ML, Pyne JW, Hallsby GA (1984) Prospects and problems in the large scale production of metabolites from plant cell tissue cultures. J Am Oil Chem Soc 61:1724–1728.

    Article  CAS  Google Scholar 

  • Smith DA, Banks SW (1986) Biosynthesis, elicitation and biological activity of isoflavonoid phytoalexins. Phytochemistry 25:979–995.

    Article  CAS  Google Scholar 

  • Somers DA, Gengenbach BG, Biesboer DD, Hackett WP, Green CE (eds) (1986) Abstracts. VI Int Congr Plant tissue and cell culture. Univ Minnesota, Minneapolis.

    Google Scholar 

  • Sondheimer E, Simeone JB (eds) (1970) Chemical ecology. Academic Press, London New York.

    Google Scholar 

  • Southard GL, Boulware RT, Walborn DR, Groznik WJ, Thorne EE, Yankell SL (1984) Sanguinarine, a new antiplaque agent: retention and plaque specificity. J Am Dent Assoc 108:338–341.

    PubMed  CAS  Google Scholar 

  • Spjut RW (1985) Limitations of a random screen: search for new anticancer drugs in higher plants. Econ Bot 39:266–288.

    Article  Google Scholar 

  • Staal GB (1975) Insect growth regulators with juvenile hormone activity. Annu Rev Entomol 20:417–460.

    Article  PubMed  CAS  Google Scholar 

  • Staba EJ (ed) (1980) Plant tissue culture as a source of biochemicals. CRC, Boca Raton, FL.

    Google Scholar 

  • Staba EJ (1985) Milestones in plant tissue culture systems for the production of secondary products. J Nat Prod 48:203–209.

    Article  CAS  Google Scholar 

  • Stedman E (1926) Studies on the relationship between chemical constitution and physiological action. Part I. Position isomerism in relation to the miotic activity of some synthetic urethanes. Biochem J 20:719–734.

    PubMed  CAS  Google Scholar 

  • Steiner RP (ed) (1986) Folk medicine: the art and the science. Am Chem Soc, Washington, DC.

    Google Scholar 

  • Stephens P (1983) Talin protein — a versatile new ingredient Food 5(3):12–16.

    Google Scholar 

  • Suffness M, Douros J (1982) Current status of the NCI plant and animal product program. J Nat Prod 45:1–14.

    Article  PubMed  CAS  Google Scholar 

  • Swain T (ed) (1972) Plants in the development of modern medicine. Harvard Univ Press, Cambridge, MASS.

    Google Scholar 

  • Taylor WI, Farnsworth NR (eds) (1975) The Catharanthus alkaloids: botany, chemistry, pharmacology, and clinical use. Dekker, New York.

    Google Scholar 

  • Thompson AC (ed) (1985) The chemistry of allelopathy: biochemical interactions among plants. Am Chem Soc, Washington, DC (ACS Symp Ser 268).

    Google Scholar 

  • Timmermann BN, Steelink C, Loewus FA (eds) (1984) Phytochemical adaptations to stress. In: Recent advances in phytochemistry, vol 18. Plenum, New York.

    Google Scholar 

  • Trease GE, Evans WC (1983) Pharmacognosy, 12th edn. Bailliere Tindall, London.

    Google Scholar 

  • Tyler VE (1979) Plight of plant-drug research in the United States today. Econ Bot 33:377–383.

    Article  Google Scholar 

  • Tyler VE (1986) Plant drugs in the twenty-first century. Econ Bot 40:279–288.

    Article  Google Scholar 

  • Tyler VE, Brady LR, Robbers JE (1976) Pharmacognosy, 7th edn. Lea & Febiger, Philadelphia, pp 490–509.

    Google Scholar 

  • Tyler VE, Brady LR, Robbers JE (1981) Pharmacognosy, 8th edn. Lea & Febiger, Philadelphia.

    Google Scholar 

  • Uphof JCT (1968) Dictionary of economic plants, 2nd edn. Cramer, Lehre, FRG.

    Google Scholar 

  • Wallace JW, Mansell RL (eds) (1976) Biochemical interaction between plants and insects. In: Recent advances in phytochemistry, vol 10. Plenum, New York.

    Google Scholar 

  • Waller GR (ed) (1987) Allelochemicals: role in agriculture and forestry. Am Chem Soc, Washington, DC (ACS Symp Ser 330).

    Google Scholar 

  • Warthen JD, Jr (1979) Azadirachta indica: a source of insect feeding inhibitors and growth regulators. US Dep Agric Sci Educ Admin. Agric Rev Man, Beltsville, ML (ARM-NE-4).

    Google Scholar 

  • Whittaker RH, Feeny PP (1971) Allelochemics: chemical interactions between species. Science 171:757–770.

    Article  PubMed  CAS  Google Scholar 

  • Windholz M, Budavari S, Blumetti RF, Otterbein ES (1983) The Merck index, 10th edn. Merck, Rahway, NJ.

    Google Scholar 

  • Zinkel DF (1981) Turpentine, rosin, and fatty acids from conifers. In: Goldstein IS (ed) Organic chemicals from biomass. CRC, Boca Raton, FL, pp 163–187.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Balandrin, M.F., Klocke, J.A. (1988). Medicinal, Aromatic, and Industrial Materials from Plants. In: Bajaj, Y.P.S. (eds) Medicinal and Aromatic Plants I. Biotechnology in Agriculture and Forestry, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73026-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73026-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73028-3

  • Online ISBN: 978-3-642-73026-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics