Skip to main content

Summary

Ribonuclease P is an enzyme that cleaves tRNA precursors to generate the 5’ termini of mature tRNA sequences. In E. coli this enzyme consists of a catalytic RNA subunit and a protein cofactor. In the absence of direct cloning of the gene for the RNA component and functional assays of the transcript of that cloned gene, it is possible to perform other biochemical tests to determine if the enzymatic activity has an essential RNA component. These include, for example, in- activation of the enzymatic activity by pretreatment with another ribonuclease and determination of the buoyant density, which may be characteristic of an RNA-protein complex, as well as direct labeling, identification, and functional assay of RNA components of the enzyme.

Extracts of many eukaryotes have been assayed for the presence of an RNAse P-like activity and, in every case thus far examined, one has been found. These activities are located in the nucleus. A separate activity is found in cell organelles such as mitochondria and chloroplasts. In those cases where tests have been performed, the RNAse P-like activities have been inactivated by pretreatment with other ribonucleases, though the data regarding an activity from X. laevis is not unanimous on this point. These activities, where measured, have a buoyant density characteristic of RNA-protein complexes. However, no RNA from a eukaryote has yet been shown to have RNAse P catalytic activity by itself in vitro. Nevertheless, by conventional definition, RNAse P can be considered to be a snRNP in eukaryotes.

The function of RNAse P is conserved across species lines. That is, enzymatic activities from particular organisms are capable of cleaving substrates from other organisms. Hybrid holoenzymes can also be formed with subunits from different species. The primary sequence of the genes coding for the subunits, however, has drifted rapidly during evolution.

RNA species other than the RNA component of RNAse P and certain already identified self-splicing rRNA and mRNA precursors may also have catalytic function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaboshi E, Guerrier-Takada C, Altman S (1980) Veal heart ribonuelease P has an essential RNA component. BioChem Biophys Res Commun 96:831–837

    Article  PubMed  CAS  Google Scholar 

  • Altman S, Baer M, Guerrier-Takada C, Vioque A (1986) Enzymatic cleavage of RNA by RNA. Trends BioChem Sci 11:515–518

    Article  CAS  Google Scholar 

  • Baer MF, Altman S (1985) A catalytic RNA and its gene from Salmonella typhimurim. Science 228:999–1002

    Article  PubMed  CAS  Google Scholar 

  • Berget SM, Robberson BL (1986) Ul, U2 and U4/6 small nuclear ribonucleoproteins are required for in vitro splicing but not polyadenylation. Cell 46:691–696

    Article  PubMed  CAS  Google Scholar 

  • Black DL, Steitz JA (1986) Pre-mRNA splicing in vitro requires intact U4/U6 Small nuclear ribonucleoprotein. Cell 46:697–704

    Article  PubMed  CAS  Google Scholar 

  • Castano JG, Ornberg R, Koster JG, Tobian JA, Zasloff M (1986) Eukaryotic pre-tRNA 5’ processing nuclease: copurification with a complex cylindrical particle. Cell 46:377–387

    Article  PubMed  CAS  Google Scholar 

  • Cech TR, Bass BL (1986) Biological catalysis by RNA. Annu Rev BioChem 55:599–629

    Article  PubMed  CAS  Google Scholar 

  • Doersen CJ, Guerrier-Takada C, Altman S, Attardi G (1985) Characterization of an RNAse P activity from HeLa cell mitochondria. J Biol Chem 260:5942–5949

    PubMed  CAS  Google Scholar 

  • Garber RL, Altman S (1979) In vitro processing of B. mori transfer RNA precursor molecules. Cell 17:389–397

    Article  PubMed  CAS  Google Scholar 

  • Gardiner K, Pace N (1980) RNAse P of Bacillus subtilis has an essential RNA component. J Biol Chem 255:7507–7509

    PubMed  CAS  Google Scholar 

  • Gold HA, Altman S (1986) Reeonstitution of RNAse P activity using inactive subunits from E. coli and HeLa cells. Cell 44:243–249

    Article  PubMed  CAS  Google Scholar 

  • Greer CL, Peebles CL, Gegenheimer P, Abelson J (1983) Mechanism of action of a yeast RNA ligase in tRNA splicing. Cell 32:537–546

    Article  PubMed  CAS  Google Scholar 

  • Guerrier-Takada C, Altman S (1984) Catalytic activity of an RNA molecule prepared by transcription in vitro. Science 223:285–286

    Article  PubMed  CAS  Google Scholar 

  • Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuelease P is the catalytic subunit of the enzyme. Cell 35:849–857

    Article  PubMed  CAS  Google Scholar 

  • Guerrier-Takada C, McClain WH, Altman S (1984) Cleavage of tRNA precursors by the RNA subunit ofE. coli ribonuelease P (Ml RNA) is influenced by 3’ proximal CCA in the substrates. Cell 38:219–224

    Article  PubMed  CAS  Google Scholar 

  • Gtirewitz M, Jain SK, Apirion D (1983) Identification of a precursor molecule for the RNA moiety of the processing enzyme RNAse P. Proc Natl Acad Sci USA 80:4450–4454

    Article  Google Scholar 

  • Hansen FG, Hansen EB, Atlung T (1985) Physical mapping and nucleotide sequence of the rnpA gene that encodes the protein component of ribonuelease P in Escherichia coli. Gene 38:85–93

    Article  PubMed  CAS  Google Scholar 

  • Hinterberger M, Pettersson I, Steitz JA (1983) Isolation of small nuclear ribonucleoproteins containing Ul, U2, U4, U5 and U6 RNAs. J Biol Chem 258:2604–2613

    PubMed  CAS  Google Scholar 

  • Itoh N, Yamada H, Kaziro Y, Mizumoto K (1987) Messenger RNA Guanylyltransferase from Sac- charomyces cerevisiae. J Biol Chem (in press)

    Google Scholar 

  • Kline L, Nishikawa S, Soll D (1981) Partial purification of RNAse P from Schizosaccharomyces pombe. J Biol Chem 256:5058–5063

    PubMed  CAS  Google Scholar 

  • Koski R (1978) Characterization of human KB cell RNAse. P Hsa and Ribonuelease NU (Ph. D. Thesis) Yale University

    Google Scholar 

  • Koski R, Bothwell A, Altman S (1976) Identification of a ribonuelease P-like activity from human KB cells. Cell 9:101–116

    Article  PubMed  CAS  Google Scholar 

  • Krupp G, Cherayil B, Frendeway D, Nishikawa S, Soll D (1986) Two RNA species copurify with RNAse P from the fission yeast Schizosaccharomyces pombe. EMBO J 5:1697–1703

    PubMed  CAS  Google Scholar 

  • Lawrence NL, Altman S (1986) Site-directed mutagenesis of Ml RNA, the RNA subunit of Escherichia ribonuelease P. J Mol Biol 191:163–175

    Article  PubMed  CAS  Google Scholar 

  • Lawrence NL, Richman A, Amini R, Altman S (1987) Heterologous enzyme function in E. coli and the selection of genes for the catalytic subunit of RNAse P. Proc Nat Acad Sci USA 84: 6825–6829

    Article  PubMed  CAS  Google Scholar 

  • Lerner MR, Steitz JA (1979) Antibodies to small nuclear RNAs complexed with proteins are produced by patients with systemic lupus erythematosus. Proc Natl Acad Sci USA 76:5495–5499

    Article  PubMed  CAS  Google Scholar 

  • Melton DA, de Robertis EM, Cortese R (1980) Order and intracellular location of the events involved in the maturation of a spliced tRNA. Nature 284:143–148

    Article  PubMed  CAS  Google Scholar 

  • Miller DL, Martin NC (1983) Characterization of the yeast mitochondrial locus necessary for tRNA biosynthesis. Cell 34:911–917

    Article  PubMed  CAS  Google Scholar 

  • Peebles C, Perlman P, Mecklenburg K, Petrillo M, Tabor J, Jarrell K, Cheng H (1986) RNA splicing: rearrangement of RNA sequence in the expression of split genes. Cell 44:213–223

    Article  PubMed  CAS  Google Scholar 

  • Peebles CL, Gegenheimer P, Abelson J (1983) Precise excisions of intervening sequences from precursor tRNAs by a membrane-associated yeast endonuclease. Cell 32:525–536

    Article  PubMed  CAS  Google Scholar 

  • Reed RE (1984) A study of the RNA component of E. coli RNAse P. (Ph. D. Thesis) Yale University

    Google Scholar 

  • Reed RE, Baer MF, Guerrier-Takada C, Donis-Keller H, Altaian S (1982) Nucleotide sequence of the gene encoding the RNA subunit (Ml RNA) of ribonuclease P fromEscherichia coli. Cell 30:627–636

    Article  PubMed  CAS  Google Scholar 

  • Reich C, Gardiner KJ, Olsen GJ, Pace B, Marsh TL, Pace NR (1986) The RNA component of the Bacillus subtilis RNAse P: sequence, activity and partial secondary structure. J Biol Chem 261:7888–7893

    PubMed  CAS  Google Scholar 

  • Ryner LC, Lewis ED, Manley JL (1986) Requirements for mRNA cleavage and polyadenylation in vivo and in vitro. Abstracts RNA Processing Meeting (Cold Spring Harbor)

    Google Scholar 

  • Sakamoto H, Kimura N, Shimura Y (1983) Processing of transcription products of the gene coding for the RNA component of RNase P. Proc Natl Acad Sci USA 80:6187–6191

    Article  PubMed  CAS  Google Scholar 

  • Sakano H, Yamada S, Shimura Y, Ozeki H (1974) Temperature sensitive mutants of Escherichia coli for tRNA synthesis. Nucl Acids Res 1:355–371

    Article  PubMed  CAS  Google Scholar 

  • Schedl P, Primakoff P (1973) Mutants of Escherichia coli thermosensitive for the synthesis of transfer RNA. Proc Natl Acad Sci USA 70:2091–2095

    Article  PubMed  CAS  Google Scholar 

  • Sharp S, Schaack J, Cooley L, Johnson-Burke D, Soll D (1985) Structure and transcription of eukaryotic tRNA genes. Crit Rev Biochem 19:107–144

    Article  CAS  Google Scholar 

  • Stark BC, Kole R, Bowman EJ, Altman S (1978) Ribonuclease P: an enzyme with an essential RNA component. Proc Natl Acad Sci USA 75:3717–3721

    Article  PubMed  CAS  Google Scholar 

  • Van der Veen R, Arnberg AC, van der Horst G, Bowen L, Tabak HF, Grivell LA (1986) Excised Group II introns in yeast mitochondria are lariats and can be formed by self-splicing in vitro. Cell 44:225–234

    Article  PubMed  Google Scholar 

  • Willis I, Hottinger H, Pearson D, Chisholm V, Leupold U, Soll D (1984) Mutations affecting excision of the intron from a eukaryotic dimeric tRNA precursor. EMBO J 3:1573–1580

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Altman, S., Gold, H.A., Bartkiewicz, M. (1988). Ribonuclease P as a snRNP. In: Birnstiel, M.L. (eds) Structure and Function of Major and Minor Small Nuclear Ribonucleoprotein Particles. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73020-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73020-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73022-1

  • Online ISBN: 978-3-642-73020-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics