Skip to main content

Comparison of Nifedipine and Nisoldipine on Human Arteries and Human Cardiac Tissues In Vitro

  • Conference paper

Summary

Studies were carried out on the action of nifedipine and nisoldipine on the contractile activity of human, isolated, coronary and mammary arteries and human, isolated, auricular and ventricular muscles. Nisoldipine depressed in a dose dependent manner the spontaneous rhythmic contractions displayed by the coronary artery preparations and at 1 nM abolished these contractions. Nisoldipine was twenty times more potent than nifedipine as an inhibitor of increase in tone induced by depolarization (100 mM K+). The rhythmic activity induced by serotonin (10μM) was more sensitive to nisoldipine than to nifedipine.

Nifedipine was five times (ventricular muscles) and ten times (auricular muscles) more potent than nisoldipine as negative inotropic agent.

From such observations in human isolated tissues, it appears that nisoldipine has a higher vascular selectivity than nifedipine. This indicates potential differences in the clinical use of these dihydropyridines.

Keywords

  • Contractile Activity
  • Human Coronary Artery
  • Ventricular Muscle
  • Calcium Entry Blocker
  • Cardiac Preparation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bean BP (1984) Nitrendipine block of cardiac calcium channels; high affinity binding to the inactivated state. Proc Nat! Acad Sci USA 81: 6388–6392

    CrossRef  CAS  Google Scholar 

  2. Braunwald E (1971) Control of myocardial oxygen consumption. Am J Cardiol 27: 416–432

    PubMed  CrossRef  CAS  Google Scholar 

  3. Finet M, Godfraind T, Khoury G (1985) The positive inotropic action of a nifedipine analogue, Bay K 8644, in guinea pig and rat isolated cardiac preparations. Br J Pharmacol 86: 27–32

    PubMed  CAS  Google Scholar 

  4. Ginsburg R, Carey B, Zera P (1986) Effect of calcium antagonist daropine on the isolated human heart. Eur J Pharmacol 125: 287–291

    PubMed  CrossRef  CAS  Google Scholar 

  5. Godfraind T (1986) Calcium entry blockade and excitation-contraction coupling in the cardiovascular system (with an attempt of pharmacological classification). Acta Pharmacol Toxicol 58 [Suppl II]: 5–30

    CrossRef  CAS  Google Scholar 

  6. Godfraind T, Miller RC (1983a) Pharmacology of coronary arteries. In: De Bakey ME, Gotto AM (eds) Factors influencing the course of myocardial ischemia. Elsevier/North Holland, Amsterdam, pp100–116

    Google Scholar 

  7. Godfraind T, Miller RC (1983b) Effects of histamine and the histamine antagonists mepyrarnine and cimetidine on human coronary arteries in vitro. Br J Pharmacol 79: 979–984

    PubMed  CAS  Google Scholar 

  8. Godfraind T, Finet M, Socrates Lima J, Miller RC (1984) Contractile activity of human coronary arteries and human myocardium in vitro and their sensitivity to calcium entry blockade by nifedipine. J Pharmacol Exp Ther 230: 514–518

    PubMed  CAS  Google Scholar 

  9. Godfraind T, Miller RC, Wibo M (1986) Calcium antagonism and calcium entry blockade. Pharmacol Rev 38: 321–417

    PubMed  CAS  Google Scholar 

  10. Godfraind T, Eglème C, Finet M, Jaumin P (1987) The actions of nifedipine and nisoldipine on the contractile activity of human coronary arteries and human cardiac tissue in vitro. Pharmacol Toxicol 61: 79–84

    PubMed  CrossRef  CAS  Google Scholar 

  11. Kalsner S, Richards R (1984) Coronary arteries of cardiac patients are hyperreactive and contain stores of amines: a mechanism for coronary spasm. Science 223: 1435–1437

    PubMed  CrossRef  CAS  Google Scholar 

  12. Kazda S, Garthoff B, Meyer H, Schlobmann K, Stoepel K, Towart R, Vater W, Wehinger E (1980) Pharmacology of a new calcium antagonistic compound, isobutylmethyl 1,4-dihydro-2,6-dimethyl-4-(2-nitrophenyl)-3,5-pyridinedicarboxylate (nisoldipine, Bay k 5552). Arzneimittelforsch 30 [II]: 2144–2162

    PubMed  CAS  Google Scholar 

  13. Maseri A (1983) The role of coronary artery spasm in ischemic heart disease: implications for treatment and prognosis. In: De Bakey ME, Gotto AM (eds) Factors influencing the course of myocardial ischemia. Elsevier/North Holland, Amsterdam, pp229–238

    Google Scholar 

  14. Oliva PB, Breckenridge JC (1977) Arteriographic evidence of coronary arterial spasm in acute myocardial infarction. Circulation 56: 366–374

    PubMed  CAS  Google Scholar 

  15. Van Nueten JM (1978) Vasodilatation or inhibition of vasoconstriction. In: Vanhoutte PM, Leusen I (eds) Mechanism of vasodilatation. Karger, Basel, pp137–43

    Google Scholar 

  16. Van de Voorde J, Leusen I (1983) Role of endothelium in the vasodilator response ofrat thoracic aorta to histamine. Eur J Pharmacol 87: 113–120

    PubMed  CrossRef  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Godfraind, T., Eglème, C., Finet, M., Debande, B., Jaumin, P. (1987). Comparison of Nifedipine and Nisoldipine on Human Arteries and Human Cardiac Tissues In Vitro. In: Hugenholtz, P.G., Meyer, J. (eds) Nisoldipine 1987. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73010-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73010-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18394-5

  • Online ISBN: 978-3-642-73010-8

  • eBook Packages: Springer Book Archive