Structure Formation by Propagating Fronts

  • M. Lücke
  • M. Mihelcic
  • B. Kowalski
  • K. Wingerath
Part of the Springer Series in Synergetics book series (SSSYN, volume 37)


In many nonlinear dissipative systems spatially periodic structures grow out of a homogeneous basic state when the driving exceeds a critical value [1]. Taylor vortex flow (TVF) in the annulus between concentric cylinders [2] and convective rolls in a fluid layer heated from below [3] are prototype examples for such dissipative structures. After increasing the driving from a subcritical to a supercritical value these structures start growing from imperfections that break the translational invariance of the system.


Front Propagation Amplitude Equation Taylor Vortex Convective Roll Driving Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cellular Structures in Instabilities, ed. by J.E. Wesfreid and S. Zaleski, Lecture Notes in Physics, Vol. 210 (Springer, Berlin, Heidelberg 1984).Google Scholar
  2. 2.
    R.C. Di Prima and H.L. Swinney in Hydrodynamic Instabilities and the Transition to Turbulence, ed. by H.L. Swinney and J.P. Gol1ub, Topics in Applied Physics, Vol. 45 (Springer, Berlin, Heidelberg 1985).Google Scholar
  3. 3.
    J.K. Platten and J.C. Legros, Convection in Liquids (Springer, Berlin, Heidelberg 1984).CrossRefGoogle Scholar
  4. 4.
    M. Lücke, M. Mihelcic, and K. Wingerath, Phys. Rev. Lett. 52, 625 (1984)ADSCrossRefGoogle Scholar
  5. 4a.
    M. Lucke, M. Mihelcic, and K. Wingerath, Phys. Rev. A31, 396 (1985); and upublished.ADSGoogle Scholar
  6. 5.
    M. Lücke, M. Mihelcic, and B. Kowalski, Phys. Rev. A35 4001 (1987)ADSGoogle Scholar
  7. 6.
    S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover, New York, 1981).Google Scholar
  8. 7.
    J.E. Welch, F.H. Harlow, J.P. Shannon, and B.J. Daly, Los Alamos Sci. Lab. Rep. LA-3425, 1966.Google Scholar
  9. 8.
    M.A. Dominguez-Lerma, G. Ahlers, and D.S. Cannell, Phys. Fluids 27, 856 (1984).ADSzbMATHCrossRefGoogle Scholar
  10. 9.
    G. Ahlers and D.S. Cannell, Phys. Rev. Lett. 50, 1583 (1983).ADSCrossRefGoogle Scholar
  11. 10.
    M. Lücke and B. Kowalski, unpublished.Google Scholar
  12. 11.
    G. Pfister and I. Rehberg, Phys. Lett. 83A, 19 (1981).ADSGoogle Scholar
  13. 12.
    D.G. Aronson and H.F. Weinberger, Advances in Mathematics (Academic, New York, 1978), Vol. 30, p. 33.Google Scholar
  14. 13.
    L. Kramer, E. Ben-Jacob, H. Brand, and M.C. Cross, Phys. Rev. Lett. 49, 1891 (1982)MathSciNetADSCrossRefGoogle Scholar
  15. 13a.
    E. Ben-Jacob, H. Brand, G. Dee, L. Kramer, and J.S. Langer, Physica 14D, 348 (1985).MathSciNetADSGoogle Scholar
  16. 14.
    G. Dee and J.S. Langer, Phys. Rev. Lett. 50, 383 (1983)ADSCrossRefGoogle Scholar
  17. 14a.
    G. Dee, Physica 15D, 295 (1985).MathSciNetGoogle Scholar
  18. 15.
    L.A. Segel, J. Fluid Mech. 38, 203 (1969)ADSzbMATHCrossRefGoogle Scholar
  19. 15a.
    A.C. Newell and J.A. Whitehead, J. Fluid Mech. 38, 279 (1969).ADSzbMATHCrossRefGoogle Scholar
  20. 16.
    R. Graham and J.A. Domaradzki, Phys. Rev. A26, 1572 (1982).ADSGoogle Scholar
  21. 17.
    M. Lücke in Nichtlineare Dynamik in kondensierter Materie, ed. By G. Eilenberger and H. Müller-Krumbhaar (Ferienkurs, Kernforschungsanlage Jülich, 1983).Google Scholar
  22. 18.
    G.P. Neitzel, J. Fluid Mech. 141, 51 (1984).ADSzbMATHCrossRefGoogle Scholar
  23. 19.
    M.A. Dominguez-Lerma, G. Ahlers, and D.S. Cannell, Phys. Fluids 28, 1204 (1985).ADSCrossRefGoogle Scholar
  24. 20.
    W. Eckhaus, Studies in Nonlinear Stability Theory, (Springer, New York, 1965).Google Scholar
  25. 21.
    J. Niederländer, Diploma Thesis (Universität des Saarlandes, Saarbrücken, 1986), unpublished.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • M. Lücke
    • 1
  • M. Mihelcic
    • 2
  • B. Kowalski
    • 2
  • K. Wingerath
    • 2
  1. 1.Institut für Theoretische PhysikUniversität des SaarlandesSaarbrückenFed. Rep. of Germany
  2. 2.Institut für Festkörperforschung der Kernforschungsanlage JülichJülichFed. Rep. of Germany

Personalised recommendations