Advertisement

Patterns of Maximal Entropy

  • R. D. Levine
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 37)

Abstract

The interplay between energy and entropy governs the equilibrium structure of macroscopic systems. At low temperatures, it is usually energetic considerations that are important while at higher excitation entropic aspects are more evident. One purpose of the maximum entropy formalism [1–4] is to extend the range of applications of this way of analysis. Must the system be at equilibrium?, must it be macroscopic?, must the relevant variable be energy and is there just one such relevant variable are some of the questions worth considering. The advantages of such an extension are clear in that a whole range of systems and phenomena, many of current interest, could be examined by methods analogous to those of equilibrium statistical mechanics [1,2]. The required generalization is that the state of the system is one of maximal entropy subject to constraints. When the value of the constraints (or ‘relevant variables’) already very much restrict the possible states, the state of the system is primarily specified by them. When many states are consistent with the given constraints, maximizing the entropy amongst that subset of states does serve to specif) the one. The generalization does therefore subsume equilibrium statistical mechanics and can indeed be used as a unifying principle for it [1,2,5].

Keywords

Lagrange Multiplier Cluster Size Distribution Equilibrium Statistical Mechanic Occupied Cell Energetic Consideration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. 1.
    M. Tribus: Thermostatics and Thermodynamics (Van Nostrand, Princeton 1961).Google Scholar
  2. 2.
    A. Katz: Principles of Statistical Mechanics (Freeman, San Francisco 1967).Google Scholar
  3. 3.
    R.D. Levine and M. Tribus, eds.: The Maximum Entropy Formalism. (M.I.T. Press, Cambridge 1979).zbMATHGoogle Scholar
  4. 4.
    J.H. Justice, ed.: Maximum Entropy and Bayesian Methods in Applied Statistics (Cambridge Univ. Press 1986).zbMATHGoogle Scholar
  5. 5.
    E.T. Jaynes: Phys. Rev. 106, 620 (1957).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    J.M. Ziman: Models of Disorder (Cambridge Univ. Press, 1979).Google Scholar
  7. 7.
    F. Yonezawa and T. Ninomiya, eds.: Topological Disorder in Condensed Matter. Springer Ser. Solid-State Sci., Vol. 46 (Springer, Berlin 1983).Google Scholar
  8. 8.
    D. Weare and N. Rivier: Contemp. Phys. 25, 59 (1984).ADSCrossRefGoogle Scholar
  9. 9.
    B. Gruenbaum and G.C. Shephard: Tillings and Patterns (Freeman, San Francisco 1985).Google Scholar
  10. 10.
    H.E. Stanley and N. Ostrowsky, eds.: On Growth and Form (Martinus Nijhoff, Boston 1986).zbMATHGoogle Scholar
  11. 11.
    S.A. Trugman: Phys. Rev. Lett 57, 607 (1986).ADSCrossRefGoogle Scholar
  12. 12.
    M. Silverberg, A. Ben-Shaul and F. Rebentrost: J. Chem. Phys. 83, 6501 (1985).ADSCrossRefGoogle Scholar
  13. 13.
    R.D. Levine: J. Phys. A. 13, 91 (1980).MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. 14.
    Y. Tikochinsky, N.Z. Tishby and R.D. Levine: Phys. Rev. A30, 2638 (1984).ADSGoogle Scholar
  15. 15.
    J.E Shore and R.W. Johnson: Trans. IEEE IT 26, 26 (1980).MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    R.D. Levine: Adv. Chem. Phys. 47, 239 (1981).CrossRefGoogle Scholar
  17. 17.
    R.D. Levine and C.E Wulfman: Physica (1987).Google Scholar
  18. 18.
    R.D. Levine: J. Chem. Phys. 65, 3302 (1976).ADSCrossRefGoogle Scholar
  19. 19.
    N. Agmon, Y. Alhassid and R.D. Levine: J. Comput. Phys. 30, 250 (1979).ADSzbMATHCrossRefGoogle Scholar
  20. 20.
    W.H. Stockmayer J. Chem. Phys. 11, 45 (1943).ADSCrossRefGoogle Scholar
  21. 21.
    T.L. Hill: Statistical Mechanics (McGraw Hill, New York 1956), Ch. 7.zbMATHGoogle Scholar
  22. 22.
    R.H. Fowler. Statistical Mechanics (Cambridge University Press 1936), Ch. 5.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • R. D. Levine
    • 1
  1. 1.The Fritz Haber Research Center for Molecular DynamicsThe Hebrew UniversityJerusalemIsrael

Personalised recommendations