Nonlinear Normal Modes of Symmetric Hamiltonian Systems

  • J. Montaldi
  • M. Roberts
  • I. Stewart
Part of the Springer Series in Synergetics book series (SSSYN, volume 37)

Abstract

In the classical dynamics of anharmonic molecules and crystals an important role is played by nonlinear normal modes — families of periodic trajectories (parametrized by energy) with periods close to those of the normal modes of the linearization. These serve as organizing centres, a skeleton about which the rest of the dynamics can be arranged. By the KAM Theorem, elliptic periodic trajectories are surrounded by invariant tori and so carry with them regions of regular motion in which the only instability is caused by Arnold diffusion. Hyperbolic periodic orbits are typically connected by heteroclinic orbits, which in turn give rise to chaotic regions of phase space, CHURCHILL and ROD [3]. An excellent example of this organizing behaviour can be seen in the Hénon-Heiles system, see HÉNON [10], ROD and CHURCHILL [19], and §§1–2.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Aitta. Private communication, 1986.Google Scholar
  2. 2.
    V. I. Arnold. Mathematical Methods of Classical Mechanics, Springer, New York, 1978.MATHGoogle Scholar
  3. 3.
    R. C. Churchill and D. L. Rod. Pathology in dynamical systems III: analytic Hamiltonians, J. Diff. Eq. 37 (1980)23–38.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    R. C. Churchill, M. Kummer and D. L. Rod. On averaging, reduction, and symmetry in Hamiltonian systems, J. Diff. Eq. 49 (1983) 359–414.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    J. J. Duistermaat. Bifurcations of periodic solutions near equilibrium points of Hamiltonian systems, in Bifurcation Theory and Applications — Montecatini 1983 (ed. L. Salvadori), Lecture Notes in Math. 1057, Springer, Berlin, 1983.Google Scholar
  6. 6.
    E. R. Fadell and P. H. Rabinowicz. Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math. 45 (1978) 139–174.MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    M. Golubitsky and I. N. Stewart. Hopf bifurcation in the presence of symmetry, Arch. Rational Mech. Anal. 87 (1985) 107–165.MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    M. Golubitsky and I. N. Stewart. Hopf bifurcation with dihedral group symmetry: coupled nonlinear oscillators, in Multiparameter Bifurcation Theory (ed. M. Golubitsky and J. Guckenheimer), Contemporary Math. 56 (1986) 131–173, Amer. Math. Soc, Providence R.I.CrossRefGoogle Scholar
  9. 9.
    E. J. Heller, E. B. Stechel, and M. J. Davis. Molecular spectra, Fermi resonances and classical motion, J. Chem. Phys. 73 (1980) 4720–4735.MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    M. Henon. Numerical exploration of Hamiltonian systems, in Chaotic Behaviour of Deterministic Systems (eds. G. Iooss, R. H. G. Helleman, and R. Stora), North-Holland, Amsterdam, 1983.Google Scholar
  11. 11.
    M. Hénon and C. Heiles. The applicability of the third integral of motion; some numerical experiments, Astronom. J. 69 (1964) 73–79.MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    M. G. Krein. The basic propositions of the theory of λ-zones of stability of a canonical system of linear differential equations with periodic coefficients, in Topics in Differential and Integral Equations and Operator Theory (by M. G. Krein), Operator Theory vol. 7, Birkhaüser, Basel 1983. (Translated from Izdat. Airad. Nauk SSSR, Moscow 1955, 413–498.)Google Scholar
  13. 13.
    A. M. Liapunov. Problème générale de la Stabilité du Mouvement, Ann. Fac. Sci. Toulouse 9 (1907), reprinted by Princeton Univ. Press 1947. (Russian original 1895.) Google Scholar
  14. 14.
    R. S. MacKay. Stability of equilibria of Hamiltonian systems, in Nonlinear Phenomena and Chaos, (ed. S. Sarkar), Adam Hilger, Bristol 1986, 254–270.Google Scholar
  15. 15.
    J.A. Montaldi, R. M. Roberts, and I. N. Stewart. Periodic solutions near equilibria of symmetric Hamiltonian systems, preprint, Warwick 1986.Google Scholar
  16. 16.
    J. Moser. New aspects in the theory of stability of Hamiltonian systems, Commun Pure Appl. Math, 11 (1958)81–114.MATHCrossRefGoogle Scholar
  17. 17.
    J. Moser. Periodic orbits near equilibrium and a theorem by Alan Weinstein, Commun. Pure Appl. Math. 29 (1976)727–747.ADSMATHCrossRefGoogle Scholar
  18. 18.
    R. M. Roberts, J. W. Swift, and D. H. Wagner. The Hopf bifurcation on a hexagonal lattice, in Multiparameter Bifurcation Theory (ed. M. Golubitsky and J. Guckenheimer), Contemporary Math. 56 (1986) 283–318, Amer. Math. Soc., Providence R.I.CrossRefGoogle Scholar
  19. 19.
    D. L. Rod and R. C. Churchill. A guide to the Hénon-Heiles Hamiltonian, in Singularities and Dynamical Systems (ed. S. Pneumatikos), Math. Studies 103, North-Holland, Amsterdam, 1985.Google Scholar
  20. 20.
    G. A. Voth and R. A. Marcus. Semiclassical theory of Fermi resonance between stretching and bending modes in polyatomic molecules, J.Chem.Phys. 82 (1985) 4064–4072.ADSCrossRefGoogle Scholar
  21. 21.
    A. Weinstein. Normal modes for nonlinear Hamiltonian systems, Invent. Math. 20 (1973)47–57.MathSciNetADSMATHCrossRefGoogle Scholar
  22. 22.
    A. Weinstein. Bifurcations and Hamilton’s principle, Math. Zeit. 159 (1978) 235–248.MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • J. Montaldi
    • 1
  • M. Roberts
    • 1
  • I. Stewart
    • 1
  1. 1.Mathematics InstituteUniversity of WarwickCoventryUK

Personalised recommendations