Skip to main content

Algorithms for Handling the Fill Area Primitive of GKS

  • Conference paper
GKS Theory and Practice

Part of the book series: EurographicSeminars ((FOCUS COMPUTER))

  • 51 Accesses

Abstract

The GKS fill area output primitive is a closed polygon specified by 3 or more vertices, say N, denoted by P(1), P(2),. . ., P(N) [1]. These points define N straight edges

$$(P(i),P(i + 1))\,for\,1 \leqslant i < N$$

and

$$(P(N),P(1)).$$

.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ISO, “Information processing systems — Computer graphics — Graphical Kernel System (GKS) functional description,” ISO 7942, ISO Central Secretariat (August 1985).

    Google Scholar 

  2. ISO, “Information processing systems — Computer graphics — Graphical Kernel System for three dimensions (GKS-3D) functional description (Draft),” ISO TC97/SC12/WG5–2 N277 Rev. (January 10, 1985).

    Google Scholar 

  3. Y. Liang and B.A. Barsky, “An Analysis and Algorithm for Polygon Clipping,” Communications of the ACM 26(11), pp.868–877 (1983).

    Article  MathSciNet  Google Scholar 

  4. J. Nievergelt and F.P. Preparata, “Plane Sweep Algorithm for Intersecting Geometric Figures,” Communications of the ACM 25(10), pp.739–747 (1982).

    Article  MATH  Google Scholar 

  5. D.F. Rogers, Procedural Elements for Computer Graphics, McGraw-Hill (1985).

    Google Scholar 

  6. Y.N. Shinde, Implementation and Installation Procedures for Indo GKS, CMC Ltd. (1985).

    Google Scholar 

  7. I.E. Sutherland and G.W. Hodgman, “Reentrant Polygon Clipping,” Communications of the ACM 17(1), pp.32–42 (1974).

    Article  MATH  Google Scholar 

  8. R.B. Tilove, “Line/Polygon Classification: A study of the Complexity of Geometric Computation,” IEEE Computer Graphics and Applications 1(2), pp.75–83 (1981).

    Article  Google Scholar 

  9. K. Weiler and P. Atherton, “Hidden Surface Removal Using Polygon Area Sorting,” Proceedings of Siggraph 77, Computer Graphics 11(2), pp.214–222 (1977).

    Article  Google Scholar 

  10. K. Weiler, Hidden Surface Removal Using Polygon Area Sorting, Masters Thesis, Program of Computer Graphics, Cornell University (1978).

    Google Scholar 

  11. K. Weiler, “Polygon Comparison using a Graph Representation,” Computer Graphics 14(3), pp. 10–18 (1980).

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 EUROGRAPHICS The European Association for Computer Graphics

About this paper

Cite this paper

Shinde, Y.N., Mudur, S.P. (1987). Algorithms for Handling the Fill Area Primitive of GKS. In: Bono, P.R., Herman, I. (eds) GKS Theory and Practice. EurographicSeminars. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72930-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72930-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72932-4

  • Online ISBN: 978-3-642-72930-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics