Skip to main content

Response of Plants and Vegetation to Mine Tailings and Dredged Materials

  • Chapter
Chemistry and Biology of Solid Waste

Abstract

Mine tailings and disposal sites of dredged materials are new environments which have been superimposed on existing ones; at the same time open mining casts and the dredging sites themselves are disturbing existing ecosystems. Tailings from mineral operations and dredged materials can be stored as upland or underwater disposals including the backfilling of mined-out areas (Andrews 1975). The bare surfaces of above ground disposals are open to erosion by water and wind without a protective vegetation. Therefore, the final aim of managing these sites is primarily to diminish the environmental impact on the surrounding landscape by stabilizing these dumps by vegetation, because technical solutions have proved to be insufficient (Greszta 1973; Barner 1978). The possibilities far revegetation of surface and underwater disposal sites depend on the ability of the colonizing plant species to respond adequately with their roots and shoots to the physical structure and the chemical composition of these materials. With regard to the high diversity of structures and compounds the statement is appropriate: “No combination of environmental factors in mine tailings and dredged materials seems to be impossible’ (Ernst and Joosse-van Damme 1983). The biological answer to combinations of extreme environmental factors is more restricted: “Not all is possible for plant growth”. This contribution will present some general principals which have to operate in plant populations and vegetation if revegetation is to be a successful enterprise either on upland or underwater sites. No special attention will be given to the impact of disposal sites on the surroundings, because pollution by wind and water erosion causes similar stress on the affected ecosystems as on the vegetation of the disposal site itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews RD (1975) Tailings. Environmental consequences and a review of control strategies. Int Conf Heavy metals in the environment, Toronto, vol 2, pp 645–675

    Google Scholar 

  • Antonovics J, Lovett J, Bradshaw AD (1967) The evolution of adaptation to nutritional factors in populations of herbage plants. In: IAEA (ed) Isotopes in plant nutrition and physiology. Int Atom Energ Ag, Vienna, pp 549–567

    Google Scholar 

  • Armstrong W (1975) Water logged soils. In: Etherington JR (ed) Environment and plant ecology. Wiley & Son, New York London, pp 181–218

    Google Scholar 

  • Ashenden TW, Stewart WS, Williams W (1975) Growth responses of sand dune populations of Dactylis glomerata L. to different levels of water stress. J Ecol 63:97–107

    Google Scholar 

  • Badaud A, Mestre JC (1984) Heavy metal tolerance in a cadmium-resistant population of Euglena gracilis. Bull Environ Contam Toxicol 32:597–601

    Google Scholar 

  • Barner J (1978) Rekultivierung zerstörter Landschaften. Enke, Stuttgart

    Google Scholar 

  • Baumeister W (1954) Über den Einfluss des Zinks bei Silene inflata Sm. Ber Dtsch Bot Ges 67:205–213

    CAS  Google Scholar 

  • Bradshaw AD (1975) The evolution of metal tolerance and its significance for vegetation establishment of metal contaminated sites. Int Conf Heavy metals in the environment, Toronto, vol 2, pp 599–622

    Google Scholar 

  • Bradshaw AD, Dancer WS, Handley JF, Shledon JC (1975) The biology of land revegetation and reclamation of China clay wastes of Cornwall. In: Chadwick MJ, Goodman GT (eds) Degraded environments and resource renewal. Blackwell, Oxford, pp 363–384

    Google Scholar 

  • Butler M, Haskew AEJ, Young MM (1980) Copper tolerance in the green alga Chlorella vulgaris. Plant Cell Environ 3:113–126

    Google Scholar 

  • Cappenberg TE (1975) Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. PhD thesis, Free Univ Amsterdam

    Google Scholar 

  • Cox RM, Hutchinson TC (1980) Multiple metal tolerances in the grass Deschampsia cespitosa (L.) Beauv. from the Sudbury smelting area. New Phytol 84:631–647

    CAS  Google Scholar 

  • Czuchajowska Z, Straczek T (1981) Germination of Vaccinium vitis-idaea seeds originating from natural stands with differing heavy metals pollution levels. Bull Acad Pol Sci Ser Sci Biol 29:135–140

    CAS  Google Scholar 

  • Daft MJ, Nicolson TH (1974) Arbuscular mycorrhizas in plants colonizing coal wastes in Scotland. New Phytol 73:1129–1138

    Google Scholar 

  • Dancer AS, Handley JF, Bradshaw AD (1977) Nitrogen accumulation in Kaolin mining wastes in Cornwall. Plant Soil 48:153–167, 303–314

    CAS  Google Scholar 

  • Davé NK, Lim TP, Clantier NR (1985) Migration of metals and trace radionuclides from mine tailings to the environment. Int Conf Heavy metals in the environment, Athens, vol 2. CEP Consultants, Edinburgh, pp 24–26

    Google Scholar 

  • Davidson D, Simon JP (1981) Thermal adaptation and acclimation of ecotypic populations of Spirodela polyrrhiza (Lemnaceae). Morphology and growth rate. J Therm Biol 6:121–128

    Google Scholar 

  • Davies MS, Snaydon RW (1974) Physiological difference among populations of Anthoxanthum odoratum. III. Response to phosphate. J Appl Ecol 11:699–708

    Google Scholar 

  • Davis RB (1974) Tubificids alter profiles of redox potential and pH in profundal lake sediment. Limnol Oceanogr 19:342–346

    Google Scholar 

  • Dean KC, Havens R, Valdez EG (1971) USBM finds many routes to stabilizing mineral wastes. Min Eng 23:61–63

    Google Scholar 

  • Dueck ThA, Ernst WHO, Faber J, Pasman F (1984) Heavy metal emission and genetic constitution of plant populations in the vicinity of two metal emission sources. Angew Bot 58:47–59

    CAS  Google Scholar 

  • Dueck ThA, Visser P, Ernst WHO, Schat H (1986) Vesicular-arbuscular mycorrhiza decreases zinc toxicity in grasses in zinc-polluted soil. Soil Biol Biochem 18:331–333

    Google Scholar 

  • Duss F, Brändie R (1982) Flooding tolerance in bulrush (Schoenoplectus lacustris L. Palla): Synthesis of different fermentation products and transport substances in the rhizome tissue under oxygen deficit. Flora 172:217–222

    CAS  Google Scholar 

  • Duxbury T, Bicknell B (1983) Metal-tolerant bacterial populations from natural and metal-polluted soils. Soil Biol Biochem 15:243–250

    CAS  Google Scholar 

  • Ernst WHO (1966) Ökologisch-soziologische Untersuchungen an Schwermetallpflanzengesellschaften Südfrankreichs und des östlichen Harzvorlandes: Flora B 156:301–318

    Google Scholar 

  • Ernst WHO (1968) Der Einflups der Phosphatversorgung sowie die Wirkung von ionogenem und chelatisiertem Zink auf die Zink- und Phosphataufnahme einiger Schwermetallpflanzen. Physiol Plant 21:323–333

    CAS  Google Scholar 

  • Ernst WHO (1972) Ecophysiological studies on heavy metal plants in South Central Africa. Kirkia 8:125–145

    Google Scholar 

  • Ernst WHO (1974) Schwermetallvegetation der Erde. Fischer, Stuttgart

    Google Scholar 

  • Ernst WHO (1975) Physiology of heavy metal resistance in plants. Int Conf Heavy metals in the environment, Toronto, vol 2, pp 121–136

    Google Scholar 

  • Ernst WHO (1976) Okologische Grenze zwischen Vioietum calaminariae und Gentiano-Koelerietum. Ber Dtsch Bot Ges 89:381–390

    CAS  Google Scholar 

  • Ernst WHO (1981) Probleme bei der Begrünung und Aufforstung von Schwermetallhalden. In: Schwabe-Braun A (Red) Vegetation als anthropo-ökologischer Gegenstand. Cramer, Vaduz, pp 237–248

    Google Scholar 

  • Ernst WHO (1982) Schwermetallpflanzen. In: Kinzel H (ed) Pflanzenökologie und Mineralstoffwechsel. Ulmer, Stuttgart, pp 472–506

    Google Scholar 

  • Ernst WHO (1983) Okologische Anpassungsstrategien an Bodenfaktoren. Ber Dtsch Bot Ges 96:49–71

    CAS  Google Scholar 

  • Ernst WHO, Weinert H (1972) Lokalisation von Zink in den Blättern von Silene cucubalus Wib. Z Pflanzenphysiol 66:258–264

    Google Scholar 

  • Ernst WHO, Joosse-van Damme ENG (1983) Umweltbelastung durch Mineralstoffe. Fischer, Jena

    Google Scholar 

  • Ernst WHO, Mathys W, Janiesch P (1975) Physiologische Grundlagen der Schwermetallresistenz — Enzymaktivitäten und organische Säuren. Westdeutscher Verlag, Opladen

    Google Scholar 

  • Ernst WHO, Verkleij JAC, Vooijs R (1983) Bioindication of a surplus of heavy metals in terrestrial ecosystems. Environ Monit Assess 3:297–305

    CAS  Google Scholar 

  • Fogg GE, Westlake DF (1955) The importance of extracellular products of algae in freshwater. Verhandl Int Ver Theor Angew Limnol 12:219–232

    Google Scholar 

  • Förstner U, Wittmann GTW (1981) Metal pollution in the aquatic environment. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Foster PL (1982) Metal resistance of Chlorophyta from rivers polluted by heavy metals. Freshwater Biol 12:41–61

    CAS  Google Scholar 

  • Gadgil RL (1969) Tolerance of heavy metals and the reclamation of industrial waste. J Appl Ecol 6:247–259

    Google Scholar 

  • Gartside DW, McNeilly P (1974) The potential for evolution of heavy metal tolerance in plants. II. Copper tolerance in normal populations of different plant species. Heredity 32:335–348

    Google Scholar 

  • Gemmell RP (1977) Colonization of industrial wasteland. Arnold, London

    Google Scholar 

  • Gianinazzi-Pearson V, Gianinazzi S (1983) The physiology of vesicular-arbuscular mycorrhizal roots. Plant Soil 71:197–209

    CAS  Google Scholar 

  • Gildon A, Tinker PB (1981) A heavy metal-tolerant strain of a mycorrhizal fungus. Trans Br Mycol Soc 77:648–649

    Google Scholar 

  • Godbold DL, Horst WJ, Marschner H, Collins JC, Thurman DA (1983) Root growth and zinc uptake by two ecotypes of Deschampsia caespitosa as affected by high zinc concentrations. Z Pflanzenphysiol 112:315–324

    CAS  Google Scholar 

  • Gregory RPG, Bradshaw AD (1965) Heavy metal tolerance in populations of Agrostis tenuis Sibth. and other grasses. New Phytol 64:131–143

    CAS  Google Scholar 

  • Greszta J (1973) The recultivation of post-industrial territories. In: Protection of man’s natural environment. Pol Acad Sci Warzawa, pp 396–417

    Google Scholar 

  • Gries B (1966) Zellphysiologische Untersuchungen über die Zinkresistenz bei Galmeiformen und Normalformen von Silene cucubalus Wib. Flora B 156:271–290

    CAS  Google Scholar 

  • Hall A, Fielding AH, Butler M (1979) Mechanism of copper tolerance in the marine fouling alga Ectocarpus siliculosus. Evidence for an exclusion mechanism. Mar Biol 54:195–199

    CAS  Google Scholar 

  • Harding JPC, Whitton BH (1976) Resistance to zinc of Stigeoclonium tenue in the field and the laboratory. Br Phycol J 11:417–426

    Google Scholar 

  • Havill DC, Ingold A, Pearson J (1985) Sulphide tolerance in coastal halophytes. Vegetatio 62:279–285

    Google Scholar 

  • Hedrick PW (1984) Population biology. The evolution and ecology of populations. Jones & Bartlett, Boston

    Google Scholar 

  • Hill JRC (1978) The use of range plants in the stabilization of phytotoxic mining wastes. Proc 1st Int Rangeland Congr, pp 707–711

    Google Scholar 

  • Hogan GD, Rauser WE (1979) Tolerance and toxicity of cobalt, copper, nickel and zinc in clones of Agrostis gigantea. New Phytol 83:665–670

    CAS  Google Scholar 

  • Hollis JP, Allan AJ, Pitts G, Joshi MM, Ibrahim JKA (1975) Sulphide diseases of rice on iron-excess soils. Acta Phytopathol Acad Sci Hung 10:329–341

    CAS  Google Scholar 

  • Ingold A (1982) The effects of sulphide toxicity on the distribution of higher plant species in salt marshes. PhD Thesis, Univ London

    Google Scholar 

  • James AL (1966) Stabilizing mine dumps with vegetation. Endeavour 25:154–157

    Google Scholar 

  • Johnson MS, McNeilly T, Putwain PD (1977) Revegetation of metalliferous mine spoil contaminated by lead and zinc. Environ Pollut 12:261–277

    CAS  Google Scholar 

  • Jordan MJ, Lechevalier MP (1975) Effects of zinc-smelter emissions on forest microflora. Can J Microbiol 21:1855–1865

    CAS  Google Scholar 

  • Jowett D (1959) Adaptation of a lead tolerant population of Agrostis tenuis to low soil fertility. Nature (London) 184:43

    Google Scholar 

  • Karataglis SS (1978) Studies on heavy metal tolerance in populations of Anthoxanthum odoratum. Ber Dtsch Bot Ges 91:205–216

    CAS  Google Scholar 

  • Landolt E, Dann W (1983) Behaviour often clones of Lemna gibba at varied concentrations of nitrogen. Ber Geobot Inst ETH Rübel Zürich 50:86–96

    Google Scholar 

  • Levitt J (1980) Response of plants to environmental stresses. Academic Press, London New York

    Google Scholar 

  • Lohmeyer W (1964) Uber die künstliche Begrünung offener Quartzsandhalden im Bergbaugelände bei Mechernich. Angew Pflanzensoziol 20:61–71

    Google Scholar 

  • Lolkema PC (1985) Copper resistance in higher plants. PhD Thesis, Free Univ Amsterdam

    Google Scholar 

  • Lolkema PC, Donker MH, Schouten AJ, Ernst WHO (1984) The possible role of metallothioneins in copper tolerance of Silene cucubalus. Planta 162:174–179

    CAS  Google Scholar 

  • Marquenie-van der Werff M, Ernst WHO (1979) Kinetics of copper and zinc uptake by leaves and roots of an aquatic plant, Elodea nuttalii. Z Pflanzenphysiol 92:1–10

    CAS  Google Scholar 

  • Marquenie-van der Werff M, Out T (1981) The effect of humic acid as Zn complexing agent on water cultures of Holcus lanatus. Biochem Physiol Pflanzen 176:274–282

    CAS  Google Scholar 

  • Mathys W (1977) The role of malate, oxalate, and mustard oils glucoside in the evolution of zinc-resistance in herbage plants. Physiol Plant 40:130–136

    CAS  Google Scholar 

  • McCarvil J, Macham LPC (1985) Metal resistance and metal accumulation in bacterial populations from activated sludges. Int Conf Heavy metals in the environment, Athens, vol 1. CEP Consultants, Edinburgh, pp 66—68

    CAS  Google Scholar 

  • McGrawth SP, Baker AJM, Morgan AN, Salmon WJ, Williams M (1980) The effects of interactions between cadmium and aluminium on the growth of two metal tolerant races of Holcus lanatus L. Environ Pollut A 23:267–277

    Google Scholar 

  • Morrey DR, Cooke JA, Baker AJM (1983) The use of stabilizers and mulches in the revegetation of metalliferous wastes. Int Conf Heavy metals in the environment, Heidelberg, vol 2. CEP Consultants, Edinburgh, pp 996–1000

    CAS  Google Scholar 

  • Nordgren A, Baath E, Soderstrom B (1985) Soil microfungi in an area polluted by heavy metals. Can J Bot 63:448–455

    CAS  Google Scholar 

  • Palaniappan VM, Marss RH, Bradshaw AS (1979) The effect of Lupinus arboreus on the nitrogen status of China clay wastes. J Appl Ecol 16:825–831

    CAS  Google Scholar 

  • Pulford JD, Kimber AJ, Duncan HJ (1983) Leaching of metals from acidic colliery spoil. Int Conf Heavy metals in the environment, Heidelberg, vol 2. CEP Consultants, Edinburgh, pp 1001–1004

    CAS  Google Scholar 

  • Repp G (1963) Die Kupferresistenz des Protoplasmas höherer Pflanzen. Protoplasma 57:643–659

    CAS  Google Scholar 

  • Rother JA, Millbank JW, Thornton I (1982) Seasonal fluctuations in nitrogen fixation (acetylene reduction) by free-living bacteria in soils contaminated with cadmium, lead and zinc. J Soil Sci 33:101–113

    CAS  Google Scholar 

  • Rozema J, Luppes E, Broekman R (1985a) Differential response of salt-marsh species to variation of iron and manganese. Vegetatio 62:293–301

    Google Scholar 

  • Rozema J, Otte R, Broekman R, Punte H (1985b) Accumulation of heavy metals in estuarine salt marsh sediment and uptake of heavy metals by salt marsh halophytes. Int Conf Heavy metals in the environment, Athens, vol 1. CEP Consultants, Edinburgh, pp 545–547

    CAS  Google Scholar 

  • Rüther F (1967) Vergleichende physiologische Untersuchungen über die Resistenz von Schwermetallpflanzen. Protoplasma 64:400–425

    Google Scholar 

  • Sarosiek J, Wozakowska-Natkanice H, Niemiec C (1982) The influence of heavy metals on dynamics of the Lemna minor population. Acta Univ Wratislaw 530, Prace Bot 25:11–39

    Google Scholar 

  • Say PJ, Diaz BM, Whitton BA (1977) Influence of zinc on lotic plants. 1. Tolerance of Hormidium species to zinc. Freshwater Biol 7:357–376

    CAS  Google Scholar 

  • Singer CE, Havill DC (1985) Manganese as an ecological factor in salt marshes. Vegetatio 62:287–292

    Google Scholar 

  • Smilde KW, Driel W van (1977) Mangaangebrek in granen verbouwd op havenslib Nota 39. Inst Bodemvruchtbaarheid, Haren

    Google Scholar 

  • Smirnoff N (1981) Iron tolerance and the role of aerenchyma in wetland plants. PhD Thesis, St. Andrews, Scotl

    Google Scholar 

  • Smith RAH, Bradshaw AD (1979) The use of metal tolerant plant populations for the reclamation of metalliferous wastes. J Appl Ecol 16:261–277

    Google Scholar 

  • Stewart WDP (1975) Nitrogen fixation by free-living microorganisms. University Press, Cambridge

    Google Scholar 

  • Street HE, Goodman GT (1967) Techniques of revegetation in the lower Swansea Valley. In: Hilton KJ (ed) The Lowee Swansea Valley project. Longmans Green, London, pp 71–110

    Google Scholar 

  • Symeonidis L, McNeilly T, Bradshaw AD (1985) Differential tolerance of three cultivars of Agrostis capillaris to cadmium, copper, lead, nickel and zinc. New Phytol 101:309–315

    CAS  Google Scholar 

  • Taylor GJ, Crowder AA (1983) Uptake and accumulation of heavy metals by Typha latifolia in wetlands of the Sudbury, Ontario region. Can J Bot 61:63–73

    CAS  Google Scholar 

  • Urquhart C (1971) Genetics of lead tolerance in Festuca ovina. Heredity 26:19–33

    Google Scholar 

  • Van der Werff M (1981) Ecotoxicity of heavy metals in aquatic and terrestrial higher plants. PhD Thesis, Free Univ Amsterdam

    Google Scholar 

  • Van der Werff M, Pruyt MJ (1982) Long-term effects of heavy metals on aquatic plants. Chemosphere 11:727–739

    Google Scholar 

  • Verkleij JAC (1980) Isoenzyme variation in pioneer species from ecologically different habitats. PhD Thesis, Free Univ Amsterdam

    Google Scholar 

  • Verkleij JAC, Bast-Cramer WB (1985) Cotolerance and multiple heavy metal tolerance in Silene cucubalus from different heavy metal sites. Int Conf Heavy metals in the environment, Athens, vol 2. CEP Consultants, Edinburgh, pp 174–176

    CAS  Google Scholar 

  • Verkleij JAC, Pieterse AH, Horneman GJT, Torenbeek M (1983) A comparative study of the morphology and isoenzyme patterns of Hydrilla verticillata (L.f.) Rooyle. Aquat Bot 17:43–59

    CAS  Google Scholar 

  • Wilkins DA (1957) A technique for the measurement of lead tolerance in plants. Nature (London) 180:37–38

    CAS  Google Scholar 

  • Wilkins DA (1978) The measurement of tolerance to edaphic factors by means of root growth New Phytol 80:623–633

    CAS  Google Scholar 

  • Williams ST, McNeilly T, Wellington EMH (1977) The decomposition of vegetation growing on metal mine waste. Soil Biol Biochem 9:271–275

    CAS  Google Scholar 

  • Wong MH (1982) Metal cotolerance to copper, lead, and zinc in Festuca rubra. Environ Res 29:42–47

    CAS  Google Scholar 

  • Wu L, Antonovics J (1975) Zinc and copper uptake by Agrostis stolonifera tolerant to both zinc and copper, New Phytol 75:231–237

    CAS  Google Scholar 

  • Wu L, Bradshaw AD, Thurman DA (1975) The potential for evolution of heavy metal tolerance in plants. Heredity 34:165–187

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ernst, W.H.O. (1988). Response of Plants and Vegetation to Mine Tailings and Dredged Materials. In: Salomons, W., Förstner, U. (eds) Chemistry and Biology of Solid Waste. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72924-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72924-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72926-3

  • Online ISBN: 978-3-642-72924-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics