Skip to main content

Microbiological Oxidations of Minerals in Mine Tailings

  • Chapter
Book cover Chemistry and Biology of Solid Waste

Abstract

Industrially significant metal sulfides are relatively stable in their natural crystalline form. As a result of mining activities, these minerals are exposed and interact with water, oxygen, carbon dioxide, and soluble chemical species, factors which collectively enhance the mineral dissolution. The very nature of mining practices such as milling and grinding, which are designed to maximize metal recovery, also ensure maximum surface area exposure of mine tailings and waste materials to subsequent oxidative processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackman TE, Kleinmann RLP (1984) In-line aeration and treatment of acid mine drainage. US Bur Mines Rep Invest 8868. US Dep Interior

    Google Scholar 

  • Ahonen L, Hiltunen P, Tuovinen OH (1986) The role of pyrrhotite and pyrite in the bacterial leaching of chalcopyrite ores. In: Lawrence RW, Branion RMR, Ebner HG (eds) Fundamental and applied biohydrometallurgy. Elsevier, Amsterdam, pp 13–22

    Google Scholar 

  • Aleem MIH, Lees H, Nicholas DJD (1963) Adenosine triphosphate-dependent reduction of nicotin-amide adenine dinucleotide by ferrocytochrome c in chemoautotrophic bacteria. Nature (London) 200:759–761

    Article  CAS  Google Scholar 

  • Basaran AH, Tuovinen OH (1987) Iron pyrite oxidation by Thiobacillus ferrooxidans: sulfur intermediates, soluble end products, and changes in biomass. Coal Preparat 3 (in press)

    Google Scholar 

  • Beck JV (1967) The role of bacteria in copper mining operations. Biotechnol Bioeng 9:487–497

    Article  CAS  Google Scholar 

  • Bhappu RB, Johnson PH, Brierley JA, Reynolds DH (1969) Theoretical and practical studies on dump leaching. Trans Soc Min Eng AIME 244:307–320

    CAS  Google Scholar 

  • Brady KS, Bigham JM, Jaynes WF, Logan TJ (1986) Influence of sulfate on Fe-oxide formation: comparisons with a stream receiving acid mine drainage. Clays Clay Mineral 34:266–274

    Article  CAS  Google Scholar 

  • Brierley CL (1974) Molybdenite-leaching: use of a high-temperature microbe. J Less Common Met 36:237–247

    Article  CAS  Google Scholar 

  • Brierley CL (1978) Bacterial leaching. Crit Rev Microbiol 6:207–262

    Article  CAS  Google Scholar 

  • Brierley CL, Brierley JA (1973) A chemoautotrophic and thermophilic microorganism isolated from an acid hot spring. Can J Microbiol 19:183–188

    Article  CAS  Google Scholar 

  • Brierley CL, Brierley JA (1982) Anaerobic reduction of molybdenum by Sulfolobus species. Zentralbl Bakt Hyg I Abt Orig C3:289–294

    Google Scholar 

  • Brierley CL, Murr LE (1973) Leaching: use of a thermophilic and chemoautotrophic microbe. Science 179:488–490

    Article  CAS  Google Scholar 

  • Brierley CL, Brierley JA, Norris PR, Kelly DP (1980) Metal-tolerant micro-organisms of hot, acid menvironments. In: Gould GW, Corry JEL (eds) Microbial growth and survival in extremes of environment. Academic Press, London New York, PP 39–51

    Google Scholar 

  • Brierley JA (1978) Thermophilic iron-oxidizing bacteria found in copper leaching dumps. Appl Environ Microbiol 36:523–525

    CAS  Google Scholar 

  • Brierley JA, Brierley CL (1978) Microbial leaching of copper at ambient and elevated temperatures. In: Murr LE, Torma AE, Brierley JA (eds) Metallurgical applications of bacterial leaching and related microbiological phenomena. Academic Press, London New York, pp 477–490

    Google Scholar 

  • Brock TD, Gustafson J (1976) Ferric iron reduction by sulfur- and iron-oxidizing bacteria. Appl Environ Microbiol 32:567–571

    CAS  Google Scholar 

  • Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol 84:54–68

    Article  CAS  Google Scholar 

  • Cathles LM, Apps JA (1975) A model of the dump leaching process that incorporates oxygen balance, heat balance, and air convection. Metall Trans 6B: 617–624

    CAS  Google Scholar 

  • Cobley JG, Cox JC (1983) Energy conservation in Acidophilic Bacteria, Microbiol Rev 47:579–595

    CAS  Google Scholar 

  • Cobley JG, Haddock BA (1975) The respiratory chain of Thiobacillus ferrooxidans: the reduction of cytochromes by Fe2+ and the preliminary characterization of rusticyanin, a novel “blue” copper protein. FEBS Lett 60:29–33

    Article  CAS  Google Scholar 

  • Cox JC, Brand MD (1984) Iron oxidation and energy conservation in the chemoautotroph Thiobacillus ferrooxidans. In: Strohl WR, Tuovinen OH (eds) Microbial chemoautotrophy. Ohio State Univ Press, Columbus, pp 31–46

    Google Scholar 

  • DiSpirito AA, Tuovinen OH (1981) Oxygen uptake coupled with uranous sulfate oxidation by Thiobacillus ferrooxidans and T acidophilus. Geomicrobiol J 2:275–291

    Article  CAS  Google Scholar 

  • DiSpirito AA, Tuovinen OH (1982a) Uranous ion oxidation and carbon dioxide fixation by Thiobacillus ferrooxidans. Arch Microbiol 133:28–32

    Article  CAS  Google Scholar 

  • DiSpirito AA, Tuovinen OH (1982b) Kinetics of uranous ion and ferrous iron oxidation by Thiobacillus ferrooxidans. Arch Microbiol 122:33–37

    Article  Google Scholar 

  • DiSpirito AA, Tuovinen OH (1984) Oxidations of non-ferrous metals by Thiobacilll In: Strohl WR, Tuovinen OH (eds) Microbial chemoautotrophy. Ohio State Univ Press, Columbus, pp 11–29

    Google Scholar 

  • DiSpirito AA, Silver M, Voss L, Tuovinen OH (1982) Flagella and pili of iron-oxidizing thiobacilli isolated from a uranium mine in northern Ontario, Canada. Appl Environ Microbiol 43:1096–1200.

    Google Scholar 

  • Dubrovsky NM, Cherry JA, Reardon EJ, Vivyurka AJ (1985) Geochemical evolution of inactive pyritic tailings in the Elliot Lake uranium district. Can Geotech J 22:110–128

    Article  CAS  Google Scholar 

  • Dugan PR (1987) Prevention of formation of acid mine drainage from high-sulfur coal refuse by inhibition of iron- and sulfur-oxidizing microorganisms. II. Inhibition of “run of mine” refuse under simulated field conditions. Biotechnol Bioeng 29:49–58

    Article  CAS  Google Scholar 

  • Dugan PR, Apel WA (1983) Bacteria and acidic drainage from coal refuse: inhibition by sodium lauryl sulfate and sodium benzoate. Appl Environ Microbiol 46:279–282

    CAS  Google Scholar 

  • Dutrizac JE, MacDonald RJC (1974) Ferric ion as a leaching medium. Mineral Sci Eng 6:59–100

    CAS  Google Scholar 

  • Eccleston M, Kelly DP, Wood AP (1985) Autotrophic growth and iron oxidation and inhibition kinetics of Leptospirillum ferrooxidans. In: Caldwell DE, Brierley JA, Brierley CL (eds) Planetary ecology. Van Nostrand Reinhold, New York, pp 263–272

    Google Scholar 

  • Ehrlich HL (1981) Geomicrobiology. Dekker, New York

    Google Scholar 

  • Erickson PM, Kleinmann RLP, Campion PSA (1982) Reducing oxidation of pyrite through selective reclamation practices. In: Symp Surface mining, hydrology, sedimentology and reclamation. Univ Kentucky, Lexington, pp 97–102

    Google Scholar 

  • Erickson PM, Ladwig KJ, Kleinmann RLP (1985) Acid mine drainage from inactive eastern coal operations. Environ Geochem Health 7:16–25

    Article  CAS  Google Scholar 

  • Ferroni GD, Leduc LG, Todd M (1986) Isolation and temperature characterization of psychrotrophic strains of Thiobacillus ferrooxidans from the environment of a uranium mine. J Gen Appl Microbiol 32:169–175

    Article  CAS  Google Scholar 

  • Fox LA, Rastogi V (1983) Developments in controlled release technology and its application in acid mine drainage. In: Symp Surface mining, hydrology, sedimentology and reclamation. Univ Kentucky, Lexington, pp 447–455

    Google Scholar 

  • Golovacheva RS, Karavaiko GI (1978) A new genus of. thermophilic spore-forming bacteria, Sul- fobacillus. Mikrobiologiya 47:815–822

    CAS  Google Scholar 

  • Goodman AE, Khalid AM, Ralph BJ (1981) Microbial ecology of Rum Jungle 1: Environmental study of sulphidic overburden dumps, experimental heap leach sites and tailings dam area. Australian atomic energy commission, AAEC/E531

    Google Scholar 

  • Goodman AE, Babij T, Ritchie AIM (1983) Leaching of a sulphide ore by Thiobacillus ferrooxidans under anaerobic conditions. In: Rossi G, Torma AE (eds) Recent progress in biohydrometallurgy. Assoc Min Sarda, Iglesias, It, pp 361–376

    Google Scholar 

  • Groudev SN, Genchev FN, Gaidarjiev SS (1978) Observations on the microflora in an industrial copper dump leaching operation. In: Murr LE, Torma AE, Brierley JA (eds) Metallurgical applications of bacterial leaching and related microbiological phenomena. Academic Press, London New York, pp 253–274

    Google Scholar 

  • Guay R, Silver M (1975) Thiobacillus acidophilus sp. nov.; isolation and some physiological characteristics. Can J Microbiol 21:281–288

    Article  CAS  Google Scholar 

  • Harries JR, Ritchie AIM (1981) The use of temperature profiles to estimate the pyritic oxidation rate in a waste rock dump from an open cut mine. Water Air Soil Pollut 15:405–423

    Article  CAS  Google Scholar 

  • Harries JR, Ritchie AIM (1983) The microenvironment within waste rock dumps undergoing pyritic oxidation. In: Rossi G, Torma AE (eds) Recent progress in biohydrometallurgy. Assoc Min Sarda, Iglesias, It, pp 377–392

    Google Scholar 

  • Harries JR, Ritchie AIM (1985) Pore gas composition in waste rock dumps undergoing pyritic oxidation. Soil Sci 140:143–152

    Article  CAS  Google Scholar 

  • Harrison AP, Jr (1981) Acidiphilium cryptum gen. nov., sp. nov.: heterotrophic bacteria from acidic mineral environments. Int J Syst Bacteriol 31:327–332

    Article  Google Scholar 

  • Harrison AP, Jr (1984) The acidophilic thiobacilli and other acidophilic bacteria that share their habitat. Annu Rev Microbiol 38:265–292

    Article  CAS  Google Scholar 

  • Harrison AP, Jr (1986a) Characteristics of Thiobacillus ferrooxidans and other iron-oxidizing bacteria, with emphasis on nucleic acid analyses. Bioteehnol Appl Biochem 8:249–257

    CAS  Google Scholar 

  • Harrison AP, Jr(1986b) The phylogeny ofiron-oxidizing bacteria. Biotechnoi Bioeng Symp 16:311–317

    CAS  Google Scholar 

  • Harrison AP, Jr, Norris PR (1985) Leptospirillumferrooxidans and similar bacteria: some characteristics and genomic diversity. FEMS Microbiol Lett 30:99–102

    Article  CAS  Google Scholar 

  • Huber G, Huber H, Stetter KO (1986) Isolation and characterization of new metal-mobilizing bacteria. Bioteehnoi Bioeng Symp 16:239–251

    CAS  Google Scholar 

  • Hutchins SR, Davidson MS, Brierley JA, Brierley CL (1986) Microorganisms in reclamation of metals. Annu Rev Microbiol 40:311–336

    Article  CAS  Google Scholar 

  • Ingledew JW (1982) Thiobacillus ferrooxidans: the bioenergetics of an acidophilic chemolithotroph. Biochim Biophys Acta 683:89–117

    CAS  Google Scholar 

  • Ingledew JW, Cobley JG (1980) A Potentiometrie and kinetic study on the respiratory chain of ferrous iron grown Thiobacillus ferrooxidans. Biochim Biophys Acta 590:141–158

    Article  CAS  Google Scholar 

  • Ingledew JW, Cox JC, Hailing PJ (1977) A proposed mechanism for energy conservation during Fe2+ oxidation by Thiobacillus ferrooxidans: chemiosomotic coupling to net H+ influx. FEMS Microbiol Lett 2:193–197

    Article  CAS  Google Scholar 

  • Ishikawa T, Murayama T, Kawahara I, Imaizumi T (1983) A treatment of acid mine drainage utilizing bacterial oxidation. In: Rossi G, Torma AE (eds) Recent progress in biohydrometallurgy. Assoc Min Sarda, Iglesias, It, pp 393–407

    Google Scholar 

  • Jaynes DB, Rogowski AS, Pionke HB, Jacoby EK (1983) Atmosphere and temperature changes within a reclaimed coal strip mine. Soil Sci 136:164–177

    Article  CAS  Google Scholar 

  • Jaynes DB, Rogowski AS, Pionke HB (1984a) Acid mine drainage from reclaimed coal strip mines. 1. Model description. Water Resourc Res 20:233–242

    Article  CAS  Google Scholar 

  • Jaynes DB, Pionke HB, Rogowski AS (1984b) Acid mine drainage from reclaimed coal strip mines. 2. Simulation results of model. Water Resourc Res 20:243–250

    Article  CAS  Google Scholar 

  • Jerez CA, Peirano I, Chamorro D, Campos G (1986) Immunological and electrophoretic differentiation of Thiobacillus ferrooxidans strains. In: Lawrence RW, Branion RMR, Ebner HG (eds) Fundamental and appUed biohydrometallurgy. Elsevier, Amsterdam, pp 443–456

    Google Scholar 

  • Karavaiko GI (1985) Microbial processes for the leaching of metals from ores. Centre of International Projects (GKNT), Moscow, USSR

    Google Scholar 

  • Kelly DP, Norris PR, Brierley CL (1979) Microbiological methods for the extraction and recovery of metals. Symp Soc Gen Microbiol 29:263–308

    CAS  Google Scholar 

  • Khalid AM, Ralph BJ (1977) The leaching behaviour of various zinc sulphide minerals with three Thiobacillus species. In: Schwartz W (ed) Conference bacterial leaching. Chemie, Weinheim, pp 165–173

    Google Scholar 

  • Kleinmann RLP, Crerar DA, Pacelli RP (1981) Biogeochemistry of acid mine drainage and a method to control acid formation. Min Eng 33:300–305

    CAS  Google Scholar 

  • Le Roux NW, Wakerley DS, Hunt SD (1977) Thermophilic thiobacillus-type bacteria from Icelandic thermal areas. J Gen Microbiol 100:197–201

    Google Scholar 

  • Lobos JH, Chisolm TE, Bopp LH, Holmes DS (1986) Acidiphilium organovorum sp. nov., an acidophilic heterotroph isolated from a Thiobacillus ferrooxidans culture. Int J Syst Bacteriol 36:139–144

    Article  CAS  Google Scholar 

  • Lowson RT (1982) Aqueous oxidation of pyrite by molecualr oxygen. Chem Rev 82:461–497

    Article  CAS  Google Scholar 

  • Lundgren DG, Dean W (1979) Biogeochemistry of iron. In: Trudinger PA, Swaine DJ (eds) Biogeo-chemical cycling of mineral-forming elements. Elsevier, Amsterdam, pp 211–251

    Chapter  Google Scholar 

  • Lundgren DG, Malouf EE (1983) Microbial extraction and concentration of metals. Adv Biotechnol Proc 1:223–249

    CAS  Google Scholar 

  • Lundgren DG, Silver M (1980) Ore leaching by bacteria. Annu Rev Microbiol 34:263–283

    Article  CAS  Google Scholar 

  • Mackintosh ME (1978) Nitrogen fixation by Thiobacillus ferrooxidans. J Gen Microbiol 105:215–218

    CAS  Google Scholar 

  • Manchee RJ (1979) Microbial mining. Trends Biochem Sci 4:77–80

    Article  CAS  Google Scholar 

  • Markosyan GE (1973) A new mixotrophic sulfur bacterium developing in acid media, Thiobacillus organoparus sp. nov. Dokl Akad Nauk SSSR 211:1205–1208

    Google Scholar 

  • Marsh RM, Norris PR (1983a) The isolation of some thermophilic, autotrophic iron- and sulphur-oxidizing bacteria. FEMS Microbiol Lett 17:311–315

    Article  Google Scholar 

  • Marsh RM, Norris PR (1983b) Mineral sulphide oxidation by moderately thermophilic acidophilic bacteria. Biotechnol Lett 5:585–590

    Article  CAS  Google Scholar 

  • Mehta AP, Murr LE (1982) Kinetic study of sulfide leaching by galvanic interaction between chal-copyrite, pyrite, and sphalerite in the presence of T. ferrooxidans (30°C) and a thermophilic microorganism (55°C). Biotechnol Bioeng 24:919–940

    Article  CAS  Google Scholar 

  • Mehta AP, Murr LE (1983) Fundamentat studies of the contribution of galvanic interaction to acid-bacterial leaching of mixed metal sulfides. Hydrometallurgy 9:235–256

    Article  CAS  Google Scholar 

  • Miller SD (1980) Sulfur and hydrogen ion buffering in pyritic strip-mine soil. In: Trudinger PA, Walter MR, Ralph BJ (eds) Biogeochemistry of ancient and modern environments. Springer, Berlin Heidelberg New York, pp 537–543

    Google Scholar 

  • Murr LE, Berry VK (1979) Observations of a natural thermophilic microorganism in the leaching of a large, experimental, copper-bearing waste body. Metall Trans B 10:523–531

    Article  Google Scholar 

  • Murr LE, Brierley JA (1978) The use of large scale test facilities in studies of the role of microorganisms in commercial leaching operations. In: Murr LE, Torma AE, Brierley JA (eds) Metallurgical applications of bacterial leaching and related microbiological phenomena. Academic Press, London New York, pp 491–520

    Google Scholar 

  • Natarajan KA, Iwasaki I (1983) Role of galvanic interactions in the bioleaching of Duluth copper-nickel sulfides. Separ Sci Technol 18:1095–1111

    Article  CAS  Google Scholar 

  • Nealson KH (1983) The microbial iron cycle. In: Krumbein WE (ed) Microbial geochemistry. Blackwell, Oxford, pp 159–190

    Google Scholar 

  • Nordstrom DK (1982) Aqueous pyrite oxidation and the consequent formation of secondary iron minerals. In: Kittrick JA, Fanning DS, Hossner LR (eds)Acid sulfate weathering. Soil Sci Soc Am, Madison, Wisc, pp 37–56

    Google Scholar 

  • Norris PR, Barr DW (1985) Growth and iron oxidation by acidophilic moderate thermophiles. FEMS Microbiol Lett 28:221–224

    Article  CAS  Google Scholar 

  • Norris PR, Kelly DP (1982) The use of mixed microbial cultures in metal recovery. In: Bull AT, Slater JH (eds) Microbial interactions and communities. Academic Press, London New York, pp 443–474

    Google Scholar 

  • Onysko SJ, Kleinmann RLP, Erickson PM (1984) Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid, and sodium lauryl sulfate. Appl Environ Microbiol 48:229–231

    CAS  Google Scholar 

  • Pugh LH, Umbreit WW (1966) Anaerobic CO2 fixation by autotrophic bacteria. Hydrogenomonas and Ferrobacillus. Arch Biochem Biophys 115:122–128

    Article  CAS  Google Scholar 

  • Ralph BJ (1979) Oxidative reactions in the sulfur cycle. In: Trudinger P, Swaine DJ (eds) Biogeo-chemical cycling of mineral-forming elements. Elsevier, Amsterdam, pp 369–400

    Chapter  Google Scholar 

  • Ralph BJ (1985) Biotechnology applied to raw minerals processing. In: Robinson CW, Howell JA (eds) Comprehensive biotechnology, vol 4. Pergamon, Oxford, pp 201–234

    Google Scholar 

  • Ritcey GM, Silver M (1982) Lysimeter investigations on uranium tailings at CANMET. CIM Bull 75 (10): 134–143

    Google Scholar 

  • Ross GJ, Ivarson KC, Miles NM (1982) Microbial formation of basic ferric sulfates in laboratory systems and in soils. In: Kittrick JA, Fanning DS, Hossner LR (eds) Acid sulfate weathering. Soil Sci Soc Am, Madison, Wisc, pp 77–94

    Google Scholar 

  • Sand W (1985) The influence of four detergents on the substrate oxidation by Thiobacillus nferrooxidans. Environ Technol Lett 6:439–444

    Article  CAS  Google Scholar 

  • Sato M (1960) Oxidation of sulfide ore bodies II. Oxidation mechanisms of sulfide minerals at 25°C. Econ Geol 55:1202–1231

    Article  CAS  Google Scholar 

  • Segerer A, Stetter KO, Klink F (1985) Two contrary modes of chemolithotrophy in the same archaebacterium. Nature (London) 313:787–789

    Article  CAS  Google Scholar 

  • Segerer A, Neuner A, Kristjansson JK, Setter KO (1986) Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: facultatively aerobic, extremely acidophilic sulfur-metabolizing archaebacteria. Int J Syst Bacteriol 36:559–564

    Article  Google Scholar 

  • Shellborn MA, Rastogi V (1985) Laboratory methods for determining the effects of bactericides on acid mine drainage. In: Symp Surface mining hydrology, sedimentology, and reclamation. Univ Kentucky, Lexington, pp. 77–81

    Google Scholar 

  • Silver M (1985) Water leaching characteristics of uranium tailings from Ontario and northern Saskatchewan. Hydrometallurgy 14:189–217

    Article  CAS  Google Scholar 

  • Silver M, Ritcey GM (1985) Effects of iron-oxidizing bacteria and vegetation on acid generation in laboratory lysimeter tests on pyrite-containing uranium tailings. Hydrometallurgy 15:255–264

    Article  CAS  Google Scholar 

  • Silver M, Ritcey GM, Cauley MP (1985) A lysimeter comparison on the effects of uranium tailings deposition methods on the release of environmental contaminants. Hydrometallurgy 15:159–172

    Article  CAS  Google Scholar 

  • Stevens CJ, Tuovinen OH (1986) Ferrous ion oxidation, nitrogen fixation (acetylene reduction), and nitrate reductase activity by Thiobacillus ferrooxidans. In: McCready RGL (ed) Proc 2nd Annu Meet BIOMINET, CANMET, Ottawa, pp 37–45

    Google Scholar 

  • Stevens CJ, Dugan PR, Tuovinen OH (1986) Acetylene reduction (nitrogen fixation) by Thiobacillus ferrooxidans. Biotechnol Appl Biochem 8:351–359

    CAS  Google Scholar 

  • Sugio T, Domatsu C, Munakata O, Tano T, Imai K (1985) Role of ferric ion-reducing system in sulfur oxidation of Thiobacillus ferrooxidans. Appl Environ Microbiol 49:1401–1406

    CAS  Google Scholar 

  • Torma AE (1977) The role of Thiobacillus ferrooxidans in hydrometallurgical processes. Adv Biochem Eng 6:1–37

    CAS  Google Scholar 

  • Torma AE (1978) Oxidation of galHum sulfides by Thiobacillus ferrooxidans. Can J Microbiol 24:888–891

    Article  CAS  Google Scholar 

  • Torma AE (1983) Biotechnology applied to mining of metals. Biotech Adv 1:73–80

    Article  CAS  Google Scholar 

  • Torma AE, Bosecker K (1982) Bacterial leaching. Progr Ind Microbiol 16:77–118

    CAS  Google Scholar 

  • Torma AE, Habashi F (1972) Oxidation of copper (II) selenide by Thiobacillus ferrooxidans. Can J Microbiol 18:1780–1781

    Article  CAS  Google Scholar 

  • Tributsch H, Bennett JC (1981a) Semiconductor-electrochemical aspects of bacterial leaching. 1. Oxidation of metal sulfides with large energy gaps. J Chem Technol Biotechnol 31:565–577

    Article  CAS  Google Scholar 

  • Tributsch H, Bennett JC (1981b) Semiconductor-electrochemical aspects of bacterial leaching. 2. Survey of rate-controlling sulfide properties. J Chem Technol Biotechnol 31:627–635

    Article  CAS  Google Scholar 

  • Tuovinen OH, Kelly DP (1974) Use of microorganisms for the recovery of metals. Int Metall Rev 19:21–31

    CAS  Google Scholar 

  • Tuovinen OH, Niemelä SI, Gyllenberg HG (1971) Tolerance of Thiobacillus ferrooxidans to some metals. Antonie van Leeuwenhoek 37:489–496

    Article  CAS  Google Scholar 

  • Tuovinen OH, Silver M, Martin PAW, Dugan PR (1981) The Agnew Lake uranium mine leach liquors: chemical examinations, bacterial enumeration and composition of plasmid DNA of iron-oxidizing thiobacilli. In: Proc Int Conf Use of microorganisms in hydrometallurgy. Hung Acad Sci, Pécs, pp 59–69

    Google Scholar 

  • Vanselow DG (1976) Mechanisms of bacterial oxidation of the copper sulfide mineral covellite. PhD thesis, Univ New South Wales, Sydney, 198 pp Vaughan DJ (1984) Electronic structures of sulfides and leaching behavior. In: Bautista RG (ed) Hydrometallurgical process fundamentals. Plenum, New York, pp 23–40

    Google Scholar 

  • Wichlacz PL, Unz RF, Langworthy TA (1986) Acidiphilium angustum sp. nov., Acidiphilium fccilis sp. nov., and Acidiphilium rubrum sp. nov.: acidophilic heterotrophic bacteria isolated from acidic coal mine drainage. Int J Syst Bacteriol 36:197–201

    Article  Google Scholar 

  • Wood AP, Kelly DP (1984) Growth and sugar metabolism of a thermophilic iron-oxidizing mixotrophic bacterium. J Gen Microbiol 130:1337–1349

    CAS  Google Scholar 

  • Wood AP, Kelly DP (1985) Autotrophic and mixotrophic growth and metabolism of some moderately thermoacidophilic iron-oxidizing bacteria. In: Caldwell DE, Brierley JA, Brierley CL (eds) Planetary ecology. Van Nostrand Reinhold, New York, pp 251–262

    Google Scholar 

  • Zillig W, Yeats S, Holz I, Bock A, Groff F, Retterberger M, Lutz S (1985) Plasmid-related anaerobic autotrophy of the novel archaebacterium Sulfolobus ambivalens. Nature (London) 313:789–791

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kelley, B.C., Tuovinen, O.H. (1988). Microbiological Oxidations of Minerals in Mine Tailings. In: Salomons, W., Förstner, U. (eds) Chemistry and Biology of Solid Waste. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72924-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72924-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72926-3

  • Online ISBN: 978-3-642-72924-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics