Note on Canonical Partitions

  • Richard Rado
Part of the Algorithms and Combinatorics book series (AC, volume 5)


1. For every set X and every cardinal number r we put
$${\left[ X \right]^r} = \left\{ {P \subseteq X:|P| = r} \right\}.$$


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baumgartner, J.E. (1975): Canonical partition relations. J. Symb. Logic 40, 541–554MathSciNetCrossRefGoogle Scholar
  2. Erdös, P., Rado, R. (1950): A combinatorial theorem. J. Lond. Math. Soc. 25, 249–255zbMATHCrossRefGoogle Scholar
  3. Erdös, P., Hajnal, A., Maté, A., Rado, R. (1984): Combinatorial set theory: partition relations for cardinals. North Holland, Amsterdam (Stud. Logic Found. Math., Vol. 106)zbMATHGoogle Scholar
  4. Ramsey, F.P. (1930): On a problem of formal logic. Proc. Lond. Math. Soc., II. Ser. 30, 264–286CrossRefGoogle Scholar
  5. Shelah, S. (1981): Canonization theorems and applications. J. Symb. Logic 46, 345–353zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Richard Rado

There are no affiliations available

Personalised recommendations