Skip to main content

Combinatorial Statements Independent of Arithmetic

  • Chapter

Part of the book series: Algorithms and Combinatorics ((AC,volume 5))

Abstract

When Peano’s first order axioms of arithmetic (P) were originally formulated it was generally felt that these axioms summed up all that was obviously true about the natural numbers (ℕ) with addition and multiplication and that any true first order statement of arithmetic would follow from these axioms. This belief held sway until in 1931 Gödel exhibited a first order statement of arithmetic (or as we shall now call it an arithmetic statement) Θ G which was true but neither it nor its negation could be proved for P. That is Θ G was an arithmetic statement independent of arithmetic.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Friedman, H. (1973): Some applications of Kleene’s methods for intuitionistic systems. In: Mathias, A.R.D., Rogers, H., (eds.): Cambridge Summer School in Mathematical Logic (Cambridge, England, 1971). Springer Verlag, Berlin, Heidelberg, pp. 113–170 (Lect. Notes Math., Vol. 337)

    Chapter  Google Scholar 

  • Friedman, H.: Independence results in finite graph theory I-VII. Mimeographed notes

    Google Scholar 

  • Gaifman, H. (1972): A note on models and submodels of arithmetic. In: Hodges, W. (ed.): Conference in Mathematical Logic — London ′70. Springer Verlag, Berlin, Heidelberg, pp. 128–144 (Lect. Notes Math., Vol. 255)

    Chapter  Google Scholar 

  • Goodstein, R. (1944): On the restricted ordinal theorem. J. Symb. Logic 9

    Google Scholar 

  • Ketonen, J., Solovay, R. (1981): Rapidly growing Ramsey functions. Ann. Math., II. Ser. 113, 267–314

    Google Scholar 

  • Kirby, L., Paris, J.B. (1977): Initial segments of models of Peano’s axioms. In: Lachlan, A., Srebrny, M., Zarach, A. (eds.): Set theory and hierachy theory. Springer Verlag, Berlin, Heidelberg, pp. 211–226 (Lect. Notes Math., Vol. 619)

    Chapter  Google Scholar 

  • Kirby, L., Paris, J.B. (1962): Accessible independence results for Peano arithmetic. Bull. Lond. Math. Soc. 14, 285–293

    Article  MathSciNet  Google Scholar 

  • Lascar, D. (1980): Une indicatrice de type “Ramsey” pour l’arithmétique de Peano et la formule de Paris-Harrington. In: McAloon, K. (ed.): Modèles de l’arithmétique. Société Mathématique de France, Paris ( Astérisque, No. 73 )

    Google Scholar 

  • Loebl, M., Matousek, J. (1987): On undecidability of the weakened Kruskal theorem. In: Simpson, S.G. (ed.): Logic and combinatorics. American Mathematical Society, Providence, RI, pp. 275–280 ( Contemp. Math., Vol. 65 )

    Google Scholar 

  • Nesetril, J., Thomas, R. (1987): Well quasi-orderings, long games and a combinatorial study of undecidability. In: Simpson, S.G. (ed.): Logic and combinatorics. American Mathematical Society, Providence, RI, pp. 281–293 ( Contemp. Math., Vol. 65 )

    Google Scholar 

  • Paris, J.B. (1978): Some independence results for Peano arithmetic. J. Symb. Logic 43, 725–731

    Article  MathSciNet  MATH  Google Scholar 

  • Paris, J.B. (1980): A hierarchy of cuts in models of arithmetic. In: Pacholski, L., Wierzejewski, J., Wilkie, A.J. (eds.): Models theory of algebra and arithmetic. Springer Verlag, Berlin, Heidelberg, pp. 312–337 (Lect. Notes Math., Vol 834)

    Chapter  Google Scholar 

  • Paris, J.B., (1981): Some conservation results for fragments of arithmetic. In: Berline, C., McAloon, K., Ressayre, J.-P. (eds.): Model theory and arithmetic. Springer Verlag, Berlin, Heidelberg, pp. 251–262 (Lect. Notes Math., Vol. 890)

    Chapter  Google Scholar 

  • Paris, J.B., Harrington, L.A. (1977): A mathematical incompleteness in Peano arithmetic. In: Barwise, J. (ed.): Handbook of mathematical logic. North Holland, Amsterdam, pp. 1133–1142 (Stud. Logic Found. Math., Vol. 90 )

    Google Scholar 

  • Pudlâk, P.: Another combinatorial sentence independent of Peano’s axioms. Mimeographed notes (Unpublished)

    Google Scholar 

  • Wainer, S.S. (1970): A classification of the ordinal recursive functions. Arch. Math. Logik Grundlagenforsch. 13, 136–153

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Paris, J. (1990). Combinatorial Statements Independent of Arithmetic. In: Nešetřil, J., Rödl, V. (eds) Mathematics of Ramsey Theory. Algorithms and Combinatorics, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72905-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72905-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72907-2

  • Online ISBN: 978-3-642-72905-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics