Advertisement

Historical Introduction and Chemical Characteristics of Antituberculosis Drugs

  • H. A. Offe
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 84)

Abstract

In 1940 Bernheim observed that virulent Mycobacterium tuberculosis cultures are stimulated in their respiration under the influence of small quantities of benzoic and salicylic acids without these acids themselves being oxidized. Subsequently Lehmann (1946a, b) established that this stimulation is reversed at higher concentrations of salicylic acid. He therefore looked among the many salicylic acid derivatives for antimetabolites that, like the pair sulphanilamide-p-aminobenzoic acid, would be capable of competitively displacing salicylic acid from the reaction site. In 2-hydroxy-4-aminobenzoic acid, as described by Seidel in 1901 and by Seidel and Bittner in 1902, Lehmann found a substance (PAS) that fulfilled his expectations and called it β m-aminosalicylic acid. He also found that other hydroxyaminobenzoic acids did not have this inhibitory effect, and that the substance acts specifically only against Mycobacterium tuberculosis strains. Lehmann described not his fundamental microbiological metabolic experiments but also the animal-experimental and clinical studies he performed with PAS.

Keywords

Isonicotinic Acid Antituberculosis Drug Historical Introduction Isonicotinic Acid Hydrazide Tuberculostatic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beilstein (1973) Handbuch der Organischen Chemie, 4. Aufl. Beilstein Institut für Literatur der Organischen Chemie (Hrsg). Springer, Berlin Heidelberg New York 3. Ergänzungswerk, Bd 14, 2. Teil, SystNr 1911, p 1436Google Scholar
  2. Bernheim F (1940) The effect of salicylate on the oxygen uptake of the tubercle bacillus. Science 92:204; also 1941 J Bact 41:387–395Google Scholar
  3. Charney J, Kuna M (1951) The spectrophotometric determination of para-aminosalicylic acid and its acetyl derivative in human urine. Am Rev Tuberc 64:577–578PubMedGoogle Scholar
  4. Ciba (1889) DRP 50 835. Friedländer 2:139Google Scholar
  5. Haizmann R (1953) Die Behandlung der Tuberkulose mit Para-Amino-Salicyl-Säure. Zentralbl Tbk forsch 62:1–208Google Scholar
  6. Lehmann J (1946a) Chemotherapy of tuberculosis. The bacteriostatic action of p-aminosalicylic acid and closely related substances upon the tubercle bacillus, together with animal experiments and clinical trials. Sv Läkartidn 43:2029–2041Google Scholar
  7. Lehmann J (1946b) P-Aminosalicylic acid in the treatment of tuberculosis. Lancet I: 1516Google Scholar
  8. Otten H, Plempel M, Siegenthaler W (1975) Antibiotika-Fibel, 4. Aufl. Thieme, Stuttgart, p 620Google Scholar
  9. Seidel H (1901) Über Derivate der Nitrophtalsäuren. Ber dtsch Chem Ges 34:4351–4353Google Scholar
  10. Seidel H, Bittner JC (1902) Darstellung der ßm Aminosalicylsäure. Monatsh Chemie 23:431–433Google Scholar

References

  1. Aronson J, Meyer WL, Brock TD (1964) A molecular model for chemical and biological differences between streptomycin and dihydrostreptomycin. Nature (Lond) 202:555–557Google Scholar
  2. Boxer GE, Jelinek VC, Leghorn PM (1947) The colorimetric determination of streptomycin in clinical preparations, urine and broth. J Biol Chem 169:153–165PubMedGoogle Scholar
  3. Brunner R (1962) Die Antibiotica, Band 1, 2. Teil, 1–2. Carl, NürnbergGoogle Scholar
  4. Dyer JR, McGonigal WE, Rice KC (1965) Streptomycin. II. Streptose. J Am Chem Soc 87:654–655Google Scholar
  5. Hoffmann H (1972) In: Erhart G, Ruschig H (Hrsg) Arzneimittel, 2. Aufl, Bd 4, Teil 1. Verlag Chemie, Weinheim, pp 314–315Google Scholar
  6. Kuehl FA, Flynn EH, Holly FW, Mozingo R, Folkers K (1947) Streptomycin antibiotics XV. N-methyl-glucosamin. J Am Chem Soc 69:3032–3035PubMedGoogle Scholar
  7. Otten A, Plempel M, Siegenthaler H (1975) Antibiotika-Fibel, 4. Aufl. Thieme, Stuttgart, p 390Google Scholar
  8. Sabath LD, Casey JI, Ruch PA, Stumpf LE, Finland M (1971) Rapid microassay of gentamycin, kanamycin, neomycin, streptomycin, and vancomycin in serum or plasma. J Lab Clin Med 78:457–463PubMedGoogle Scholar
  9. Schatz A, Bugie E, Waksman SA (1944) Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria. Proc Soc Exp Biol Med 55:66–69Google Scholar
  10. Schenck JR, Spielman MA (1945) The formation of maltol by the degradation of streptomycin. J Am Chem Soc 67:2276–2277PubMedGoogle Scholar
  11. Umezawa S, Takahashi Y, Usui T, Tsuchiya T (1974a) Total synthesis of streptomycin. J Antibiot 27:997–999Google Scholar
  12. Abstr 14th Interscience Conf on Antimicrob Agents and Chemother, Session 33. San FranciscoGoogle Scholar
  13. Umezawa S, Takahashi Y, Usui T, Tsuchiya T (1974b) Total synthesis of streptomycinGoogle Scholar
  14. Wolfram ML, Olin SM, Polgiase WJ (1950) A synthesis of streptidine. J Am Chem Soc 72:1724–1729Google Scholar

References

  1. Behnisch R, Mietzsch F, Schmidt H (1948) Neue schwefelhaltige Chemotherapeutica. Angewandte Chemie 60:113–115Google Scholar
  2. Behnisch R, Mietzsch F, Schmidt H (1950) Chemical studies on thiosemicarbazones with particular reference to antituberculous activity. Am Rev Tuberc 61:1–7PubMedGoogle Scholar
  3. Carl E, Marquardt P (1950) Kupferkomplexbildung und tuberkulostatische Chemotherapeutica. Z Naturforsch 4b:280–283Google Scholar
  4. Domagk G, Hegler C (1942) Chemotherapie der bakteriellen Infektionen. Hirzel, Leipzig, p 136–137Google Scholar
  5. Domagk G, Behnisch R, Mietzsch F, Schmidt H (1946) Über eine neue, gegen Tuberkel-bazillen in vitro wirksame Verbindungsklasse. Naturwissenschaften 33:315Google Scholar
  6. Domagk G (1948) Die experimentellen Grundlagen einer Chemotherapie der Tuberkulose. Beitr Klin Tuberk 101:367–394Google Scholar
  7. Heilmeyer L (1949) Die Chemotherapie der Tuberkulose. Dtsch Med Wochenschr 74:161–167PubMedGoogle Scholar
  8. Heilmeyer J, Heilmeyer L (1950) Quantitative Bestimmung kleiner Mengen von Benzaldehydthiosemicarbazon und dessen Derivaten (TBI/698) in Körperflüssigkeiten. Arch Exp Path Pharmakol 210:424–430Google Scholar
  9. Knöchel W (1950) Beziehung zwischen Geschmack und Verträglichkeit von Conteben. Neue Med Welt 1:1487Google Scholar
  10. Kuhn R, Zilliken F (1950) Über den Geschmack von p-Acetaminobenzaldehyd-thiosemicarbazon. Naturwissenschaften 37:167Google Scholar
  11. Polster W (1950) Zur Lösung von Conteben in Wasser für intravenöse Injektionen. Tbk Arzt 4:594–595Google Scholar
  12. Short EI (1961) The detection of thiacetazone in urine. Tubercle (Lond) 42:524–528Google Scholar
  13. Wernitz W (1950) Eine photometrische Nachweismethode des TBI/698 im Ham. Klin Wochenschr 28:200–201Google Scholar
  14. Wilde W (1950) Nachweis von TBI/698 in Körpersäften und Sekreten. Med Monatsschr 4:106–107Google Scholar
  15. Wollenberg O (1950) Über die kolorimetrische Bestimmung von Thiosemicarbazonen im Ham. Dtsch Med Wochenschr 75:899–902PubMedGoogle Scholar

References

  1. Chorine V (1945) Action de l’amide nicotinique sur les bacilles du genre Mycobacterium. C R Acad Sci (Paris) 220:150–151Google Scholar
  2. Dalmer O, Walter E (1936) Verfahren zur Herstellung von Derivaten der Pyrazinmonocarbonsäure. DRP 632:257Google Scholar
  3. Ellard GA (1969) Absorption, metabolism and excretion of pyrazinamide in man. Tubercle (Lond) 50:144–158Google Scholar
  4. Felder E, Tiepolo K (1962) Verfahren zur Herstellung von Pyrazincarbonsäure-aminomethylamiden. DAS 1129:492Google Scholar
  5. Hall SA, Spoerri PE (1940) Syntheses in the pyrazine series. II. Preparation and properties of aminopyrazine J Am Chem Soc 62:664–665Google Scholar
  6. Kraus P, Krausovâ E, gimân Z (1961) A paper strip test for detection of cycloserine and pyrazinamide in urine. Tubercle (Lond) 42:521–523Google Scholar
  7. Kushner S, Dalalian H, Sanjurjo JL, Bach FL Jr, Safir SR, Smith VK Jr, Williams JH (1952) Experimental chemotherapy of tuberculosis. II. The synthesis of pyrazinamides and related compounds. J Am Chem Soc 74:3617–3621Google Scholar
  8. Rao KVN, Eidus CVJ, Tripathy SP (1965) A simple test for the detection of pyrazinamide and cycloserine in urine. Tubercle (Lond) 46:199–205Google Scholar
  9. Solotorovsky M, Gregory FJ, Ironsin EJ, Bugie EJ, O’Neill RC, Pfister K (1952) Pyrazinoic acid amide an agent active against experimental murine tuberculosis. Proc Soc Exp Biol Med 79:563–565PubMedGoogle Scholar
  10. Stottmeier KD, Beam RE, Kubica GP (1969) The absorption and excretion of pyrazinamide (PZA) in rabbits and tuberculous patients. Trans 27th Pulm Dis Res Conf VAAF:16Google Scholar
  11. Yeager RL, Munroe WGC, Dessau FL (1952) Pyrazinamide (Aldinamide) in the treatment of pulmonary tuberculosis. Am Rev Tuberc 65:523–534PubMedGoogle Scholar

References

  1. Behnisch R, Mietzsch F, Schmidt H (1948) Verfahren zur Herstellung von Thiosemicarbazonen. DBP 927:505Google Scholar
  2. Bernstein J, Lott WA, Steinberg BA, Yale HL (1952) Chemotherapy of experimental tuberculosis. V. Isonicotinic acid hydrazide (Nydrazid) and related compounds. Am Rev Tuberc 65:357–364PubMedGoogle Scholar
  3. Bernstein J, Jambor WP, Lott WA, Pansy F, Steinberg BA, Yale HL (1953a) Chemotherapy of experimental tuberculosis. IV. Derivatives of isoniazid. Am Rev Tuberc 67:354–365Google Scholar
  4. Bernstein J, Jambor WP, Lott WA, Pansy F, Steinberg BA, Yale HL (1953b) Chemotherapy of experimental tuberculosis. VII. Heterocyclic acid hydrazides and derivatives. Am Rev Tuberc 67:366–375Google Scholar
  5. Buu-Hoi NP, Dechamps G, Hoân N, Le Bihan H, Ratsimamanga AR, Binon F (1949) Dérivés de la phtalazine d’intérêt biologique. Comptes Rendues de l’Academie de Sciences 228:2037–2039Google Scholar
  6. Buu-Hoi NP, Dechamps G, Hoân N, Le Bihan H, Ratsimamanga AR, Binon F (1949) Dérivés de la phtalazine d’intérêt biologique. Comptes Rendues de [Cited from Ann Inst Pasteur 72:580 (1946)Google Scholar
  7. Chorine V (1945) Action de l’amide nicotinique sur les bacilles du genre Mycobacterium. C R Acad Sci (Paris) 220:150–151Google Scholar
  8. Domagk G (1951) O.V. Bollinger-Vorlesung München, 13. Dez. 1951Google Scholar
  9. Domagk G, Offe HA, Siefken W (1952) Weiterentwicklung der Chemotherapie der Tuberkulose. Beitr Kiin Tuberk 107:325–337Google Scholar
  10. Fox HH (1951) Synthetic tuberculostatics show promise. Chem Eng News 29:3963–3964Google Scholar
  11. Fox HH, Gibas JT (1952) Synthetic tuberculostats. IV. Pyridine carboxylic acid hydrazides and benzoic acid hydrazides. J Org Chem 17:1653–1660Google Scholar
  12. Fratér-Schröder M, Zbinden G (1976) A gaschromatographic assay for the determination of isoniazid N-acetylation; observation in rats with induced constant urine flow. EXPEAM 32:767Google Scholar
  13. Gardner TS, Wenis E, Smith FA (1951) The synthesis of compounds for the chemotherapy of tuberculosis. II. Hydroxamic acid derivatives. J Am Chem Soc 73:5455–5456Google Scholar
  14. Grunberg E, Schnitzer RJ (1952) Studies on the activity of hydrazine derivatives of isoni-cotinic acid in the experimental tuberculosis of mice. Quart Bull Sea View Hosp13:3–11Google Scholar
  15. F. Hoffmann La Roche Co. AG und Farbenfabriken Bayer AG (1952) Experientia 8:364Google Scholar
  16. Jouin JP, Buu Hoi NP (1946) De l’activité des représentants de quelques séries chimiques sur la pousse du bacille de Koch. Ann Inst Pasteur 72:580–606 (see p 590)Google Scholar
  17. Krüger-Thiemer E (1956) Chemie des Isoniazids. J Ber Borstel 3:192–424Google Scholar
  18. Krüger-Thiemer E (1958) Biochemie des Isoniazids. J Ber Borstel 4:299–509Google Scholar
  19. Lauterburg BH, Smith CV, Mitchell JR (1981) Determination of isoniazid and its hy-drazino metabolites, acetylisoniazid, acetylhydrazine, and diacetylhydrazine in human plasma by gaschromatography-mass spectrometry. J Chromatogr 224:431–438Google Scholar
  20. Levaditi C, Girard R, Vaisman A, Ray A (1951) Comparison entre le GHOG de Girard et le TB I de Domagk du point de vue de leur activité antituberculeuse chez la souris. C R Soc Biol (Paris) 145:60–65Google Scholar
  21. Levaditi C, Girard R, Vaisman A, Ray A (1952) Activité antituberculeuse de la y-pyridine-aldéhydethiosemicarbazone (G 527), isomere du G 469. Ann Inst Pasteur 82:102–104Google Scholar
  22. Meyer H, Mally J (1912) Über Hydrazinderivate der Pyridincarbonsäuren. Monatsh Che-mie 33:393–414Google Scholar
  23. Offe HA, Siefken W, Domagk G (1952a) Neoteben, ein neues hochwirksames Tuberculostaticum und die Beziehungen zwischen Konstitution und tuberculostatischer Wirksamkeit bei Hydrazinderivaten. Naturwissenschaften 39:118–119Google Scholar
  24. Offe HA, Siefken W, Domagk G (1952b) Hydrazinderivate und ihre Wirksamkeit gegenüber Mycobacterium tuberculosis. Z Naturforsch 7b:446–462Google Scholar
  25. Offe HA, Siefken W, Domagk G (1952c) Hydrazinderivate aus Pyridincarbonsäuren mit Carbonylverbindungen und ihre Wirksamkeit gegenüber Mycobacterium tuberculosis. Z Naturforsch 7b:462–468Google Scholar
  26. Offe HA (1956) Konstitution und tuberkulostatische Wirksamkeit in der Neotebenreihe. Medizin und Chemie 5:130–141Google Scholar
  27. Otten H, Plempel M, Siegenthaler W (1975) Antibiotika-Fibel, 4. Aufl. Thieme, Stuttgart, p 599–601Google Scholar
  28. Sushkin AG, Guzeeva SA (1978) Polarographic determination of isoniazid in the urine. Prob Tuberk 56, issue 7:76–79Google Scholar

References

  1. Boothe JH, Morton II J, Petisi JP, Wilkinson RG, Williams JH (1953) Tetracycline. J Am Chem Soc 75:4621Google Scholar
  2. Boothe JH, Morton II J, Petisi JP, Wilkinson RG, Williams JH (1953/54) Chemistry of tetracycline. Antibiotics Annual, pp 46–48Google Scholar
  3. Caswell AH, Hutchison JD (1971) Selectivity of cation chelation to tetracyclines: evidence for special conformation of calcium chelate. Biochem Biophys Res Commun 43:625–630PubMedGoogle Scholar
  4. Conover LH, Moreland WT, English AR, Stephens CR, Pilgrim FJ (1953) Terramycin. XI. Tetracycline. J Am Chem Soc 75:4622–4623Google Scholar
  5. Dürckheimer W (1975) Tetracycline: Chemie, Biochemie and Struktur-Wirkungsbeziehungen. Angew Chem 87:751–764Google Scholar
  6. Frank A, Riedl K (1962) Tetracycline. Chemie and Eigenschaften. In: Brunner R, Machek G (Hrsg) Die Antibiotika Bd I, Teil 2. Hans Carl, Nürnberg, pp 314–375Google Scholar
  7. Kane JH, Finlay AC, Sobin BA (1950/51) Antimicrobial agents from natural sources. Ann NY Acad Sci 53:226–228PubMedGoogle Scholar
  8. Kersey RC (1950) A turbidimetric assay for terramycin. J Am Pharm Assoc Scientific Ed XXXIX:252–253Google Scholar
  9. Mani J-C, Foltran G (1971) Fluorescence des chélates des tétracyclines. Bull Soc Chim Fr: 4141–4146Google Scholar
  10. Minieri PP, Firman MC, Mistretta AG, Abbey A, Bricker CE, Rigler NE, Sokol H (1953/ 54) A new broad spectrum antibiotic product of the tetracycline group. Antibiotics Annual: 81–87Google Scholar
  11. Pryde A, Gilbert MT (1979) Applications of high performance liquid chromatography. Chapman and Hall, London New YorkGoogle Scholar
  12. Regna PP, Solomons IA (1950) The chemical and physical properties of terramycin. Ann NY Acad Sci 53:229–237PubMedGoogle Scholar
  13. SIâhlayskâ A, Tawakkol MS, Slânskÿ V, Frslinkovâ M (1972) Komplexometrische Gehaltsbestimmung einiger Tetracyclin-Antibiotica und von Chloramphenicol. Pharmazie 27:456–457Google Scholar

References

  1. Bartz QR, Ehrlich J, Mold JD, Penner MA, Smith RM (1951) Viomycin, a new tuberculostatic antibiotic. Am Rev Tuberc 63:4–6PubMedGoogle Scholar
  2. Bycroft BW, Cameron D, Croft LR, Hassanali-Walji A, Johnson AW, Webb T (1971) The total structure of viomycin, a tuberculostatic peptide antibiotic. Experientia 27:501–503PubMedGoogle Scholar
  3. Bycroft BW (1972) The crystal structure of viomycin, a tuberculostatic antibiotic. J C S Chem Comm: 660–661Google Scholar
  4. Finlay AC, Hobby GL, Hochstein F, Lees TM, Lenert TF, Means JA, P’An SY, Regna PP, Routien JB, Sobin BA, Tate KB, Kane JH (1951) Viomycin, a new antibiotic active against mycobacteria. Am Rev Tuberc 63:1–3PubMedGoogle Scholar
  5. Izumi R, Noda T, Ando T, Take T, Nagata A (1972) Studies on tuberactinomycin III. Isolation and characterization of two minor components tuberactinomycin B and tuberactinomycin O. J Antibiot 25:201–207PubMedGoogle Scholar
  6. Mayer RL, Eisman PS, Konopka EH (1954) Antituberculosis activity of vinactane. Experientia 10:335–336PubMedGoogle Scholar
  7. Noda T, Take T, Nagata A, Wakamiya T, Shiba T (1972) Chemical studies on tuberactinomycin III. The chemical structure of viomycin (tuberactinomycin B). J Antibiot 25:427–428PubMedGoogle Scholar
  8. Otten H, Plempel M, Siegenthaler W (1975) Antibiotika-Fibel. 4. Aufl. Thieme, Stuttgart, p 657Google Scholar

References

  1. Bianchi S, Felder E, Tiepolo U (1965) Terizidone. Una nuova base di Schiff della D-cicloserina. Il Farmaco (Ed Pr) 20:366–371Google Scholar
  2. Eidus L (1968) Kontrollmethoden zum Nachweis der Tuberkulostatica zweiter Ordnung im Urin. Beitr Klin Tuberk 137:196–203Google Scholar
  3. Folkers K, Stammer CH, Wilson AN, Holly FW (1955) Synthesis of D-4-amino-3-isoxazolidone. J Am Chem Soc 77:2346–2347Google Scholar
  4. Freerksen E, Krüger-Thiemer E, Rosenfeld M (1959) Cycloserin (D-4-amino-isoxazolidin3-on). Antibiot Chemother 6:303–396Google Scholar
  5. Fust B (1958) D-Cycloserin. Die Medizinische 12:470–478Google Scholar
  6. Harned RL, Hidy PH, Kropp la Baw EK (1955) Cycloserine. I. A preliminary report. Antibiot Chemother 5:204–205Google Scholar
  7. Hidy PH, Hodge EH, Young VV, Harned RL, Brewer GA, Philipps WF, Runge WR, Stavely HE, Pohland A, Boas H, Sullivan HR (1955) Structure and reaction of cycloserine. J Am Chem Soc 77:2345–2346Google Scholar
  8. Iwainsky H, Grunert M, Reutgen H, Sehrt I (1970) Nachweis und Bestimmung antituberkulös wirksamer Verbindungen. Pharmazie 25:505–513PubMedGoogle Scholar
  9. Jones LR (1956) Colorimetric determination of cycloserine, a new antibiotic. Analyt Chem 28:39–41Google Scholar
  10. Kuehl FA, Wolf FJ, Trenner NR, Peck RL, Howe E, Hunnewell BD, Downing G, Newstead E, Folkers K (1955) D-4-amino-3-isooxazolidone, a new antibiotic. J Am Chem Soc 77:2344–2345Google Scholar
  11. Kurosawa H (1952) Studies on the antibiotic substances from actinomyces. XXIII. The isolation of an antibiotic produced by a strain of streptomyces “K 30”. J Antibiot Ser B 5:682–688Google Scholar
  12. Plattner PA, Boller A, Frick H, Fuerst A, Hegedues B, Kirschensteiner H, Majnoni St, Schlaepfer R, Spiegelberg H (1957) Synthesen des 4-amino-3-isoxalidinons (Cycloserin) und einiger Analoga. Helv Chim Acta 40:1531–1552Google Scholar
  13. Rao KVN, Eidus L, Jacob CV, Tripathy SP (1965) A simple test for the detection of pyrazinamide and cycloserine in urine. Tubercle 46:199–205PubMedGoogle Scholar
  14. Shull GM, Sardinas JL (1955) Pa-94, an antibiotic identical with D-4-amino-3-isoxalidinone. Antibiot Chemother 5:398–399Google Scholar

References

  1. Bernstein J, Lott WA, Steinberg BA, Yale HL (1952) Chemotherapy of experimental tuberculosis. V. Isonicotinic acid hydrazide (Nydrazid) and related compounds. Am Rev Tuberc 65:357–364PubMedGoogle Scholar
  2. Bieder A, Brunel P, Mazeau L (1966) Identification de trois nouveau métabolites de l’éthionamide: chromatographie, spectrophotometrie, polarographie. Ann Pharm Fr 24:493–500PubMedGoogle Scholar
  3. Chorine V (1945) Action de l’amide nicotinique sur les bacilles du genre Mycobacterium. C R Acad Sci (Paris) 220:150–152Google Scholar
  4. Efimovsky O, Rumpf P (1954) Recherches sur l’acide méthyl-2-pyridine-carboxylique-4. Bull Soc Chim Fr 1954:648–649Google Scholar
  5. Eidus L (1968) Kontrollmethoden zum Nachweis der Tuberkulostatica zweiter Ordnung im Urin. Beitr Klin Tuberk 137:196–203Google Scholar
  6. Eidus L, Harnanansingh AMT (1968) A urine test for control of ingestion of ethionamide. Am Rev Resp Dis 98:315–316PubMedGoogle Scholar
  7. Fox HH, Gibas JT (1952) Synthetic tuberculostats. IV. Pyridine carboxylic acid hydrazides and benzoic azid hydrazides. J Org Chem 17:1653–1660Google Scholar
  8. Gardner TS, Wenis E, Lee J (1954) The synthesis of compounds for the chemotherapy of tuberculosis. IV. The amide function. J Org Chem 19:753–757Google Scholar
  9. Grumbach F, Rist N, Libermann D, Moyeux M, Cals S, Clavel S (1956) Activité antituberculeuse expérimentale de certains thioamides isonicotiniques substitués sur le noyau. C R Acad Sci 242:2187–2189Google Scholar
  10. Grunert M, Werner E, Iwainsky H, Eule H (1968) Veränderungen des Äthionamides und seines Sulfoxydes in vitro. Beitr Klin Tuberk 138:68–82Google Scholar
  11. Harnanansingh AMT, Eidus L (1970) Micro method for the determination of ethionamide in serum. Int J Clin Pharmacol 3:128–131Google Scholar
  12. Isler O, Gutmann H, Straub O, Fust B, Boehni E, Studer A (1955) Chemotherapie der experimentellen Tuberkulose. II. Kernsubstituierte Isonicotinsäurehydrazide. Heiv Chim Acta 38:1033–1046Google Scholar
  13. König HB, Siefken W, Offe HA (1954) Schwefelhaltige Derivate von Pyridincarbonsäuren und davon abgeleitete Verbindungen. Chem Ber 87:825–834Google Scholar
  14. Libermann D, Moyeux M, Rist N, Grumbach F (1956) Sur la préparation de nouveaux thioamides pyridiniques actifs dans la tuberculose expérimentale. C R Acad Sci (Paris) 242:2409–2412Google Scholar
  15. Meltzer RJ, Lewis AD, King JA (1955) Antituberculous substances. IV. Thioamides. J Am Chem Soc 77:4062–4066Google Scholar
  16. Offe HA, Siefken W, Domagk G (1952) Neoteben, ein neues hochwirksames Tuberculostaticum und die Beziehungen zwischen Konstitution und tuberculostatischer Wirksamkeit von Hydrazinderivaten. Naturwissenschaften 39:118–119Google Scholar
  17. Putter J (1964) Photometrische Bestimmung des 2-Äthyl-isothionicotinylamid in Organen und Körperflüssigkeiten. Arzneim Forsch 14:1198–1203Google Scholar
  18. Putter J (1972) Bestimmung von Prothionamid und Äthionamid sowie den entsprechenden Sulfoxiden im Blutplasma. Arzneim Forsch 22:1027–1031Google Scholar
  19. Tikhonov VA, Grigalyunas AP, Guzeeva SA (1976) Polarographic investigation of the blood ethionamide and prothionamide concentration in patients with tuberculosis of the lungs. Prob Tuberk 54, issue 5:75–78Google Scholar

References

  1. Cron UJ, Fardig OB, Johnson DL, Palermiti FM, Schmitz H, Hooper IR (1958) The chemistry of kanamycin. Ann NY Acad Sci 76:27–30PubMedGoogle Scholar
  2. Granatek AP, Duda S, Buckwalter FH (1960) Pharmaceutical properties and stability of kanamycin. Antibiot Chemother 10:148–156PubMedGoogle Scholar
  3. Hoffmann H (1972) Antibiotika. Kanamycin. In: Ehrhart G, Ruschig H (Hrsg) Arzneimittel, Bd 4, Teil 1. Verlag Chemie, Weinheim, pp 354–358Google Scholar
  4. Meida K, Ueda M, Yagishita K, Kawaji S, Kondo S, Murase M, Takeuchi T, Okami Y, Umezawa H (1957) Studies on kanamycin. J Antibiot Jpn Ser A 10:228–231Google Scholar
  5. Noone P, Pattison IR, Samson D (1971) A simple rapid method for assay of aminoglyco-side antibiotics. Lancet II:16Google Scholar
  6. Otten H, Plempel M, Siegenthaler W (1975) Antibiotika-Fibel. 4. Aufl. Thieme, Stuttgart, p 408Google Scholar
  7. Pryde A, Gilbert MT (1979) Application of high performance liquid chromatography. Chapman and Hall, London New YorkGoogle Scholar
  8. Takeuchi T, Hikiji T, Nitta K, Yamazaki S, Abe S, Takayama H, Umezawa H (1957) Biological studies on kanamycin. J Antibiot Jpn Ser A 10:107–114Google Scholar
  9. Umezawa H, Ueda M, Maeda K, Yagishita K, Kondo S, Okami Y, Utahara R, Osato Y, Nitta K, Takeuchi T (1957) Production and isolation of a new antibiotic, kanamycin. J Antibiot Jpn Ser A 10:181–188Google Scholar
  10. Umezawa S, Tatsuta K, Koto S (1968a) The total synthesis of kanamycin A. J Antibiot Jpn 21:367–369Google Scholar
  11. Umezawa S, Koto S, Tatsuta K, Tsumura T (1968b) The total synthesis of kanamycin C. J Antibiot Jpn 21:162–163Google Scholar

References

  1. Buu-Hoi NP, Xuong ND (1953) Sur les composés tuberculostatiques du groupe de la thiourée et leur méchanisme d’action. C R Acad Sci 237:498–500Google Scholar
  2. Bloedner CD (1965) Bakteriologische Blutspiegeluntersuchungen bei Mono-Medikation von Isoxyl. Beitr Klin Tuberk 130:245–254Google Scholar
  3. Huebner CF, Marsh JL, Mizzoni RH, Mull RP, Schroeder DC, Troxell HA, Scholz CR (1953) A new class of antituberculous drugs. J Am Chem Soc 75:2274–2275Google Scholar
  4. Meissner G (1965) Resorption und Ausscheidung von Isoxyl im Serum sowie im Lungengewebe. X Congresso Argentinico de Tisiologia y Pneumologia, Mar des Planta, 28 Nov-2 Dec 1965Google Scholar
  5. Winkelmann E (1972) Mittel gegen mycobakterielle Erkrankungen (Tuberkulose, Lepra). In: Ehrhart G, Ruschig H (Hrsg) Arzneimittel, Bd 4, Teil 1. Verlag Chemie, Weinheim, pp 167–170Google Scholar

References

  1. Bycroft BW, Cameron D, Croft LR, Johnson AW (1968) Synthesis and stereochemistry of capreomycidine [a-(2-imino-hexahydro-4-pyrimidyl)-glycine]. Chem Commun: 1301–1302Google Scholar
  2. Bycroft BW, Cameron D, Croft LR, Hassanali-Walji A, Johnson AW, Webb T (1971) Total structure of capreomycin I B, a tuberculostatic peptide antibiotic. Nature 231:301–302PubMedGoogle Scholar
  3. Herr EB Jr, Haney ME, Pittenger GE, Higgens CE (1960) Isolation and characterization of a new peptide antibiotic. Proc Indiana Acad Sci 69:134Google Scholar
  4. Herr EB Jr, Haney ME, Pittenger GE (1961) Capreomycin: a new peptide antibiotic. 14oth Meeting Am Chem Soc, Abstract no 49 cGoogle Scholar
  5. Herr EB Jr, Redstone MO (1966) Chemical and physical characterization of capreomycin. Ann NY Acad Sci 135:940–946PubMedGoogle Scholar
  6. Voigt R, Maa Bared AG (1970) Zur chemischen Bestimmung von Capreomycin. Pharmazie 25:471–472PubMedGoogle Scholar

References

  1. Reutgen H, Grunert M (1969) Nachweis und Bestimmung von Ethambutol auf chemischem Wege. Pharmazie 24:148–152PubMedGoogle Scholar
  2. Shepherd RG, Wilkinson RG (1962) Antituberculous agents. II. N,N’-Diisopropylethylenediamine and analogs. J Med Pharm Chem 5:823–835Google Scholar
  3. Strauss I, Erhardt F (1970) Ethambutol absorption, excretion and dosage in patients with renal tuberculosis. Chemother 15:148–157Google Scholar
  4. Wilkinson RG, Shepherd RG, Thomas JP, Baughn C (1961) Stereospecificity in a new type of synthetic antituberculous agent. J Am Chem Soc 83:2212–2213Google Scholar
  5. Wilkinson RG, Cantrall MB, Shepherd RG (1962) Antituberculous agents. III. (+)-2,2- (Ethylenediimino)-di-1-butanol and some analogs. J Med Pharm Chem 5:835–845Google Scholar

References

  1. Arioli V, Pallanza R, Furesz S, Carniti G (1967) Rifampicin, a new rifamycin. I. Bacteriological studies. Arzneim Forsch 17: 523–529Google Scholar
  2. Binda G, Domenichini E, Gottardi A, Orlandi B, Ortelli E, Pacini B, Fowst G (1971) Rifampicin, a general review. Arzneim Forsch 21: 1908–1969Google Scholar
  3. De Boer C, Meulman PA, Wnuk RJ, Peterson DH (1970) Geldanamycin, a new antibiotic. J Antibiot 23: 442–447Google Scholar
  4. Eidus L, Ling GM, Harnanansingh AMT (1969) Laboratory investigation of rifampin. Int J Clin Pharmacol 2: 296–299Google Scholar
  5. Eidus L, Harnanansingh AMT (1969) Simple procedures for checking rifampin in urine. Am Rev Resp Dis 100: 738–739PubMedGoogle Scholar
  6. Kishi T, Asai M, Muroi M, Harada S, Mizuta E, Terao E, Miki T, Mizuno K (1969) Toly-pomycin. I. Structure of tolypomycinone. Tetrahedron Letters No 2: 91–95PubMedGoogle Scholar
  7. Lüttringhaus A, Gralheer H (1942) Über eine neue Art atropisomerer Verbindungen. Lie-bigs Ann Chem 550: 67–98Google Scholar
  8. Maggi N, Pasqualucci CR, Ballotta R, Sensi P (1966) Rifampicin: a new orally active rifamycin. Chemotherapia 11: 285–292Google Scholar
  9. Otten H, Plempel M, Siegenthaler W (1975) Antibiotika-Fibel 4. Aufl. Thieme, Stuttgart, p 532Google Scholar
  10. Rhuland LE, Stern KF, Reames HR (1957) Streptovaricin. III. In vivo studies in the tuberculous mouse. Am Rev Tuberc Pulm Dis 75: 588–593Google Scholar
  11. Sensi P, Margalith P, Timbal MT (1959) Rifomycin, a new antibiotic. Preliminary report. Il Farmaco Ed Sci 14: 146–147Google Scholar
  12. Siminoff P, Smith RM, Sikolski WT, Savage GM (1957) Streptovaricin. Am Rev Tuberc Pulm Dis 75: 576–587Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • H. A. Offe

There are no affiliations available

Personalised recommendations