Skip to main content

Implications of Microtubules in Cytomechanics: Static and Motile Aspects

  • Chapter
Cytomechanics

Abstract

Microtubules (MTs) are hollow core cylinders that measure 25 nm in diameter. The walls are primarily composed of dimers of the proteins α- and β-tubulin (see Dustin 1984 for review). The dimers are arranged in 13 strands or protofilaments that are aligned almost parallel to the longitudinal axis of the MT (Tilney et al. 1973; Crepeau et al. 1978). The individual monomers in adjacent protofilaments are not aligned in register along the perpendicular axis of the tubule, but are staggered at an oblique angle and follow a helical path around the tubule (Amos 1979). This monomer helix has been shown to be a 3-start helical family with a pitch of 12 nm and a pitch angle of 10.5° for 13 protofilament MTs.

Posthumously (see Laudatio)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen RD (1964) Cytoplasmic streaming and locomotion in marine Foraminifera. In: Allen RD, Kamiya N (eds) Primitive motile systems in cell biology. Academic Press, London, pp 407–432

    Google Scholar 

  • Allen RD (1985) New observations on cell architecture and dynamics by video-enhanced contrast optical microscopy. Ann Rev Biophys Biophys Chem 14:265–290

    Article  CAS  Google Scholar 

  • Allen RD (1987) Microtubules as intracellular engines. Sci Am, 255:42–49

    Article  Google Scholar 

  • Allen RD, Weiss DG (1985) An experimental analysis of the mechanisms of fast axonal transport in the squid giant axon. In: Ishikawa H, Hatano S, Sato H (eds) Cell motility: mechanism and regulation. 10. Yamada Conference, Sept. 1984. University of Tokyo Press, Tokyo, pp 327–333

    Google Scholar 

  • Allen RD, Weiss DG, Hayden JH, Brown DT, Fujiwake H, Simpson M (1985) Gliding movement of and bidirectional transport along single native microtubules from squid axoplasm: evidence for an active role of microtubules in cytoplasmic transport. J Cell Biol 100:1736–1752

    Article  PubMed  CAS  Google Scholar 

  • Amos LA (1977) Arrangement of high molecular weight associated proteins on purified mammalian brain microtubules. J Cell Biol 72:642–654

    Article  PubMed  CAS  Google Scholar 

  • Amos LA (1979) Structure of microtubules. In: Roberts K, Hyams JS (eds) Microtubules. Academic Press, London, pp 1–64

    Google Scholar 

  • Amos LA, Klug A (1974) Arrangement of subunits in flagellar microtubules. J Cell Sci 14:523–550

    PubMed  CAS  Google Scholar 

  • Bear T, Schmitt FO, Young JZ (1937) Investigations on the protein constituents of nerve axoplasm. Proc R Soc Lond B Biol Sci 123:520–529

    Article  CAS  Google Scholar 

  • Bereiter-Hahn J (1978) A model for microtubular rigidity. Cytobiologie 17:298–300

    PubMed  CAS  Google Scholar 

  • Bloodgood RA (1975) Biochemical analysis of axostyle motility. Cytobios 14:101–120

    CAS  Google Scholar 

  • Bloodgood RA, Miller KR, Fitzharris TB, Mclntosh JR (1974) The ultrastructure of Pyr-sonympha and its associated microorganisms. J Morphol 143:77–106

    Article  Google Scholar 

  • Brady ST (1985) A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317:73–75

    Article  PubMed  CAS  Google Scholar 

  • Buchner K, Seitz-Tutter D, Schönitzer K, Weiss DG (1987) A quantitative study of an-terograde and retrograde axonal transport of exogenous proteins in olfactory nerve C-fibers. Neuroscience (in press)

    Google Scholar 

  • Caplow M, Langford GM, Zeeberg B (1982) Concerning the efficiency of the treadmilling phenomenon with microtubules. J Biol Chem 257:15012–15021

    PubMed  CAS  Google Scholar 

  • Cassimeris L, Wadsworth P, Salmon ED (1985) Dynamic instability and differential stability of cytoplasmic microtubules in human monocytes. In: De Brabander M, de Mey J (eds) Microtubules and microtubule inhibitors 1985. Elsevier, Amsterdam, pp. 119–125

    Google Scholar 

  • Cohen WD, Bartelt D, Jaeger R, Langford GM, Nemhauser I (1982) The cytoskeleton system of nucleated erythrocytes. I. Composition and function of mayor elements. J Cell Biol 93:828–838

    Article  PubMed  CAS  Google Scholar 

  • Crepeau RH, McEwen B, Edelstein SJ (1978) Differences in α and ß polypeptide chains of tubulin resolved by electron microscopy with image reconstruction. Proc Natl Acad Sci USA 75:5005–5010

    Article  Google Scholar 

  • Dentier WL, Granett S, Rosenbaum JL (1975) Ultrastructural localization of the high molecular weight proteins associated with in vitro assembled brain microtubules. J Cell Biol 65:237–241

    Article  Google Scholar 

  • Dustin P (1984) Microtubules, 2nd edn. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Edds KT (1975) Motility in Echinosphaerium nucleofllum. I. An analysis of particle motions in the axopodia and a direct test for involvement of the axon. J Cell Biol 66:145–155

    Article  PubMed  CAS  Google Scholar 

  • Erickson HP (1974) Microtubule surface lattice and subunit structure and observations on reassembly. J Cell Biol 60:153–167

    Article  PubMed  CAS  Google Scholar 

  • Febvre-Chevalier C, Febvre J (1986) Motility mechanisms in the actinopods (Protozoa): a review with particular attention to axopodial contraction/extension, and movement of nonac-tin filament systems. Cell Motil Cytoskel 6:198–208

    Article  CAS  Google Scholar 

  • Fuge H, Bastmeyer M, Steffen W (1985) A model for chromosome movement based on lateral interaction of spindle microtubules. J Theor Biol 115:391–399

    Article  PubMed  CAS  Google Scholar 

  • Gall JG (1966) Microtubule fine structure. J Cell Biol 31:639–644

    Article  PubMed  CAS  Google Scholar 

  • Gibbons IR (1965) Chemical dissection of cilia. Arch Biol 76:317–352

    CAS  Google Scholar 

  • Grimstone AV, Cleveland LR (1965) The fine structure and function of the contractile axo-styles of certain flagellates. J Cell Biol 24:387–400

    Article  PubMed  CAS  Google Scholar 

  • Heuser JE (1986) Different structure states of a microtubule cross-linking molecule, captured by quick-freezing motile axostyles in protozoa. J Cell Biol 103:2209–2227

    Article  PubMed  CAS  Google Scholar 

  • Hill TL, Kirschner MW (1982) Free energy calculations for microtubule treadmilling. Int Rev Cytol 84:185–234

    Article  Google Scholar 

  • Johnson KA (1985) Pathway of the microtubule-dynein ATPase and the structure of dynein: a comparison with actomyosin. Ann Rev Biophys Biophys Chem 14:161–188

    Article  CAS  Google Scholar 

  • Kim H, Binder LI, Rosenbaum JL (1979) The periodic association of MAPs with brain microtubules in vitro. J Cell Biol 80:266–276

    Article  PubMed  CAS  Google Scholar 

  • King SM, Hyams JS, Luba A (1982) Absence of microtubule sliding and an analysis of spindle formation and elongation in isolated mitotic spindle from the yeast Saccharomyces cerevi-siae. J Cell Biol 94:341–349

    Article  PubMed  CAS  Google Scholar 

  • Koonce MP, Schliwa M (1985) Bidirectional organelle transport can occur in cell processes that contain single microtubules. J Cell Biol 100:322–326

    Article  PubMed  CAS  Google Scholar 

  • Kuroda K, Manabe E (1983) Microtubule-associated cytoplasmic streaming in Caulerpa. Proc JpnAcad 59B:131–134

    Article  CAS  Google Scholar 

  • Kuznetsov SA, Gelfand VI (1986) Bovine brain kinesin is a microtubule-activated ATPase. Proc Natl Acad Sci USA 83:8530–8534

    Article  PubMed  CAS  Google Scholar 

  • Langford GM (1980) Arrangement of subunits in microtubules with 14 protofilaments. J Cell Biol 87:521–526

    Article  PubMed  CAS  Google Scholar 

  • Langford GM (1983) Length and appearance of projections on neuronal microtubules in vitro after negative staining: evidence against a cross-linking function for MAPs. J Ultrastruct Res 85:1–10

    Article  PubMed  CAS  Google Scholar 

  • Langford GM, Inoue S (1979) Motility of the microtubular axostyle in Pyrsonympha. J Cell Biol 80:521–538

    Article  PubMed  CAS  Google Scholar 

  • Langford GM, Williams E, Peterkin D (1986) Microtubule-associated proteins (MAPs) of dogfish brain and squid optic ganglia. Ann NY Acad Sci 466:440–443

    Article  PubMed  CAS  Google Scholar 

  • Langford GM, Allen RD, Weiss DG (1987) Substructure of sidearms on squid axoplasmic vesicles and microtubules visualized by negative contrast electron microscopy. Cell Motil Cytoskel 7:20–30

    Article  CAS  Google Scholar 

  • Lasek RJ (1986) Polymer sliding in axons. J Cell Sci 5:161–179

    CAS  Google Scholar 

  • Leterrier JF, Liem RKH, Shelanski ML (1982) Interactions between neurofilaments and microtubule-associated proteins: a possible mechanism for interorganellar bridging. J Cell Biol 95:982–986

    Article  PubMed  CAS  Google Scholar 

  • MacGregor HC, Stebbings H (1970) A massive system of microtubules associated with cytoplasmic movement in telotrophic ovarioles. J Cell Sci 6:431–449

    PubMed  CAS  Google Scholar 

  • Mclntosh JR, Hepler PK, van Wie DG (1969) Model for mitosis. Nature 224:659–663

    Google Scholar 

  • Mandelkow E-M, Mandelkow E (1985) Unstained microtubules studied by cryoelectron microscopy. Substructure, supertwist and disassembly. J Mol Biol 181:123–135

    Article  PubMed  CAS  Google Scholar 

  • Margolis RL, Wilson L (1981) Microtubule treadmills — possible molecular machinery. Nature 293:705–711

    Article  PubMed  CAS  Google Scholar 

  • Martz D, Lasek RJ, Brady ST, Allen RD (1984) Mitochondrial motility in axons: membranous organelles may interact with the force generating system through multiple surface binding sites. Cell Motil 4:89–101

    Article  PubMed  CAS  Google Scholar 

  • Miller RH, Lasek RJ (1985) Crossbridges mediate anterograde and retrograde vesicle transport along microtubules in squid axoplasm. J Cell Biol 101:2181–2193

    Article  PubMed  CAS  Google Scholar 

  • Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312:237–242

    Article  PubMed  CAS  Google Scholar 

  • Mitchison T, Evans L, Schulze E, Kirschner M (1986) Sites of microtubule assembly and disassembly in the mitotic spindle. Cell 45:515–527

    Article  PubMed  CAS  Google Scholar 

  • Morris JR, Lasek RJ (1982) Stable polymers of the axonal cytoskeleton: the axoplasmic ghost. J Cell Biol 92:192–198

    Article  PubMed  CAS  Google Scholar 

  • Pickett-Heaps JD, Tippit DH, Porter KR (1982) Rethinking mitosis. Cell 29:729–744

    Article  PubMed  CAS  Google Scholar 

  • Pryer NK, Wadsworth P, Salmon ED (1986) Polarized microtubule gliding and particle saltations produced by soluble factors from sea urchin eggs and embryos. Cell Motil Cytoskel 6:537–548

    Article  CAS  Google Scholar 

  • Rebhun LI (1972) Polarized intracellular particle transport: saltatory movements and cytoplas-mic streaming. Int Rev Cytol 32:93–137

    Article  PubMed  CAS  Google Scholar 

  • Sasaki S, Stevens JK, Bodick N (1982) Serial reconstruction of microtubule arrays within den-drites of the cat retinal ganglion cell: the cytoskeleton of a vertebrate dendrite. Brain Res 259:193–206

    Article  Google Scholar 

  • Scherson T, Kreis TE, Schlessinger J, Littauer UZ, Borisy GG, Geiger B (1984) Dynamic interactions of fluorescently labeled microtubule-associated proteins in living cells. J Cell Biol 99:425–434

    Article  PubMed  CAS  Google Scholar 

  • Schliwa M (1984) Mechanisms of intracellular transport. In: Shay J (ed) Cell and muscle motility, vol 5. Plenum, New York, pp 1–82

    Google Scholar 

  • Schliwa M, Pryzwansky KB, van Blerkom J (1982) Implications of cytoskeletal interactions for cellular architecture and behaviour. Philos Trans R Soc Lond B Biol Sci 299:199–205

    Article  PubMed  CAS  Google Scholar 

  • Scholey JM, Porter ME, Grissom PM, Mclntosh JR (1985) Identification of kinesin in sea urchin eggs and evidence for its localisation in the mitotic spindle. Nature 318:483–486

    Article  PubMed  CAS  Google Scholar 

  • Smith DS, Järlfors U, Beranek R (1970) The organization of synaptic axoplasm in the lamprey (Petromyzon marinus). J Cell Biol 46:199–219

    Article  PubMed  CAS  Google Scholar 

  • Smith DS, Järlfors U, Cameron BF (1975) Morphological evidence for the participation of microtubules in axonal transport. Ann NY Acad Sci 253:472–506

    Article  PubMed  CAS  Google Scholar 

  • Stebbings H, Hunt C (1982) The nature of the clear zone around microtubules. Cell Tissue Res 227:609–617

    Article  PubMed  CAS  Google Scholar 

  • Tilney LG, Bryan J, Bush DJ, Fujiwara K, Mooseker MS, Murphy DB, Snyder DH (1973) Microtubules: evidence for thirteen protofilaments. J Cell Biol 59:267–275

    Article  PubMed  CAS  Google Scholar 

  • Travis JL, Kenealy JFX, Allen RD (1983) Studies on the motility of the Foraminifera. II. The dynamic microtubular cytoskeleton of the reticulopodial network of Allogromia laticollaris. J Cell Biol 97:1668–1676

    Article  PubMed  CAS  Google Scholar 

  • Tsukita S, Ishikawa H (1980) The movement of membranous organelles in axons. Electron microscopic identification of anterogradely and retrogradely transported organells. J Cell Biol 84:513–530

    Article  PubMed  CAS  Google Scholar 

  • Vale RD, Reese TS, Sheetz MP (1985 a) Identification of a novel, force-generating protein, kinesin, involved in microtubule-based motility. Cell 42:39–50

    Article  PubMed  CAS  Google Scholar 

  • Vale RD, Schnapp BJ, Reese TS, Sheetz MP (1985 b) Organelle, bead and microtubule translocations promoted by soluble factors from the squid giant axon. Cell 40:559–569

    Article  PubMed  CAS  Google Scholar 

  • Voter WA, Erickson HP (1982) Electron microscopy of MAP 2 (microtubule associated protein 2). J Ultrastruct Res 80:374–382

    Article  PubMed  CAS  Google Scholar 

  • Wadsworth P, Salmon ED (1986) Analysis of the treadmilling model during the metaphase of mitosis using fluorescence redistrubution after photobleaching. J Cell Biol 102:1032–1038

    Article  PubMed  CAS  Google Scholar 

  • Warner FD, Mitchell DR (1981) Polarity of dynein-microtubule interactions in vitro: cross-bridges between parallel and antiparallel microtubules. J Cell Biol 89:35–44

    Article  PubMed  CAS  Google Scholar 

  • Wegner A (1976) Head to tail polymerization of actin. J Mol Biol 108:139–150

    Article  PubMed  CAS  Google Scholar 

  • Weiss DG (1985) Dynamics and cooperativity in the organization of cytoplasmic structures and flows. In: Haken H (ed) Complex systems — operational approaches in neurobiology, physics, and computers 1985. Springer, Berlin Heidelberg New York, pp 179–181

    Google Scholar 

  • Weiss DG (1986 a) The mechanism of axoplasmic transport. In: Iqbal Z (ed) Axoplasmic transport. CRC, Boca Raton FL, pp 275–307

    Google Scholar 

  • Weiss DG (1986 b) Visualization of the living cytoskeleton by video-enhanced microscopy and digital image processing. J Cell Sci 5:1–15

    CAS  Google Scholar 

  • Weiss DG (1987) Visualisation of microtubule gliding and organelle transport along micro-tubules from squid giant axons. In: Wohlfarth-Bottermann K-E (ed) Nature and function of cytoskeletal proteins in motility and transport. Prog Zool 34: (in press)

    Google Scholar 

  • Weiss DG, Allen RD (1985) The organization of force generation in microtubule-based motility. In: De Brabander M, De Mey J (eds) Microtubules and microtubule inhibitors 1985. Elsevier, Amsterdam, pp 232–240

    Google Scholar 

  • Weiss DG, Gross GW (1983) Intracellular transport in axonal microtubular domains. I. Theoretical considerations on the essential properties of a force generating mechanism. Protoplasma 114:179–197

    Article  CAS  Google Scholar 

  • Weiss DG, Keller F, Gulden J, Maile W (1986) Towards a new classification of intracellular particle movements based on quantitative analyses. Cell Motil Cytoskel 6:128–135

    Article  CAS  Google Scholar 

  • Weiss DG, Seitz-Tutter D, Langford GM, Allen RD (1987) The native microtubule as the engine for bidirectional organelle movements. In: Smith RS (ed) Axonal transport. Alan R Liss,NY,pp 91–111

    Google Scholar 

  • Yamazaki S, Maeda T, Miki-Noumura T (1982) Flexural rigidity of singlet microtubules estimated from statistical analysis of fluctuating images. In: Sakai H, Mohri H, Borisy GG (eds) Biological functions of microtubules and related structures. Academic Press, Tokyo, pp 41–48

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weiss, D.G., Langford, G.M., Allen, R.D. (1987). Implications of Microtubules in Cytomechanics: Static and Motile Aspects. In: Bereiter-Hahn, J., Anderson, O.R., Reif, WE. (eds) Cytomechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72863-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72863-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72865-5

  • Online ISBN: 978-3-642-72863-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics