Skip to main content

Pathophysiological Mechanisms Leading to Permanent Brain Damage in Surviving Children

  • Conference paper

Abstract

According to our present state of knowledge, there are four principally different pathophysiological mechanisms which can lead to permanent brain dysfunction (Table 1). In some specific disorders of the nervous system, brain dysfunction is mainly due to one or other of these mechanisms but it is hardly ever exclusively caused by only one. Perinatal brain damage is most frequently caused by either hypoxia, ischemia, bleeding, or trauma. Thus, direct cell injury leading to nerve cell death is a most important pathogenetic mechanism (Friede 1975; Myers 1977).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi M, Volk BW (1975) Pathology of GM2-Gangliosidoses. In: Volk BW, Scheck L (eds) The gangliosidoses. Plenum, New York.

    Google Scholar 

  • Dobbing J (1981) The later development of the brain and its vulnerability. In: Davis JA (eds) Scientific foundation in pediatrics, 2nd edn. Heinemann, p 744.

    Google Scholar 

  • Fábregues I, Ferrer I (1983) Abnormal perisomatic structures in non-pyramidal neurons in the cerebral cortex in Down’s syndrome. Neuropathol Appl Neurobiol 9: 165–170.

    Article  PubMed  Google Scholar 

  • Friede RL (1975) Developmental neuropathology. Springer, Vienna New York.

    Google Scholar 

  • Hammerschlag R (1983) How do neuronal proteins know where they are going? Speculations on the role of molecular address markers. Dev Neurosci 6: 2–17.

    Article  PubMed  Google Scholar 

  • Holowach-Thurston J, McDougal DB Jr (1969) Effect of ischemia on metabolism of the brain of the newborn mouse. Am J Physiol 216: 348.

    Google Scholar 

  • Huttenlocher PR (1974) Dendritic development in neocortex of children with mental defect and infantile spasms. Neurology 24: 203–210.

    PubMed  CAS  Google Scholar 

  • Jones KL (1975) Aberrant neuronal migration in the fetal alcohol syndrome. Birth Defects 11(7): 131–132.

    PubMed  CAS  Google Scholar 

  • Lou HC, Lassen NA, Tweed WA, Johnson G, Jones M, Palahniuk RJ (1979) Pressure passive cerebral blood flow and breakdown of the blood-brain barrier in experimental fetal asphyxia. Acta Paediatr Scand 68: 35.

    Article  Google Scholar 

  • Machado-Salas JP (1984) Abnormal, dendritic patterns and aberrant spine development in Bourneville’s disease — a Golgi survey. Clin Neuropathol 3: 52–58.

    PubMed  CAS  Google Scholar 

  • Milligan DW, Bryan MH (1979) Failure of autoregulation of the cerebral circulation in the sick newborn infant. Pediatr Res 13: 527.

    Google Scholar 

  • Myers RE (1977) Experimental models of perinatal brain damage: relevance to human pathology. In: Gluck L (ed) Intrauterine asphyxia and the developing fetal brain. Reprinted by the US Department of Health, Education, and Welfare, NIH 4: 37-97.

    Google Scholar 

  • Purpura DP (1974) Dendritic spine dysgenesis and mental retardation. Science 186: 1126–1128.

    Article  PubMed  CAS  Google Scholar 

  • Purpura DP, Highstein SM, Karabelas AB, Walkley SU (1980) Intracellular recording and HRP-staining of cortical neurons in feline ganglioside storage disease. Brain Res 181: 446–449.

    Article  PubMed  CAS  Google Scholar 

  • Schapiro MB, Rosman NP, Kemper TL (1984) Effects of chronic exposure to alcohol on the developing brain. Neurobehav Toxicol Teratol 6: 351–356.

    PubMed  CAS  Google Scholar 

  • Takashima S, Mitro T, Becker LW (1985) Neuronal development in the medullary reticular formation in sudden infant death syndrome and premature infants. Neuropediatrics 16: 76.

    Article  PubMed  CAS  Google Scholar 

  • Volpe JJ (1981) Neurology of the newborn. Saunders, Philadelphia.

    Google Scholar 

  • Wisniewski K, Dambska M, Sher JH, Quazi Q (1983) A clinical neuropathological study of the fetal alcohol syndrome. Neuropediatrics 14: 197–201.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schulte, F.J. (1988). Pathophysiological Mechanisms Leading to Permanent Brain Damage in Surviving Children. In: Kubli, F., Patel, N., Schmidt, W., Linderkamp, O. (eds) Perinatal Events and Brain Damage in Surviving Children. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72850-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72850-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72852-5

  • Online ISBN: 978-3-642-72850-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics