Photonic Energy Transport in Phycobilin-Chlorophyll System: A Comparative Study with Artificial Multilayer Films

  • I. Yamazaki
  • N. Tamai
  • T. Yamazaki
  • M. Mimuro
  • A. Murakami
  • Y. Fujita
Part of the Springer Proceedings in Physics book series (SPPHY, volume 20)


Transport and trapping of electronic excitation-energy have long been the subject of extensive theoretical and experimental works [1,2], Special attention has recently been paid to the excitation energy in some molecular assemblies of some biological systems as well as artificial organizates. Photosynthetic light-harvesting antenna in plants is characterized by highly efficient absorption and subsequent transport of excitation energy to the reaction center. The antenna pigment systems in red and blue-green algae have accessary pigments, phycobilins, as well as chlorophylls, which are attached on thylakoid membranes [3,4]. A schematic illustration of the structure of phycobilizome is shown in Fig. 1(a). Very little is known about the dipole-dipole resonance (Förster-type) energy transfer in restricted molecular geometries such as biological systems and one- and two-dimensional molecular arrangements. In theoretical approaches, the time-dependent equations for the donor fluorescence decay have been proposed for low dimensional systems by HAUSER et al. [5], ZUMOFEN and BLUMEN [6] and BAUMANN and FAYER [7] The present paper is concerned with the sequential energy transfer in the phycobilin-chlorophyll systems in some algae and also in an artificial Langmuir-Blodgett (LB) multilayers as is shown in Fig. 1(b). A comparative study of the sequential energy transfer has been made by means of a picosecond time-resolved fluorescence spectroscopy.


Decay Curve Multilayer Film Fluorescence Decay Fluorescence Band Fluorescence Rise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Th. Förster: Z. Naturf. 4a, 321 (1949)ADSGoogle Scholar
  2. 2.
    V. M. Agranovich and M. D. Galanin: Electronic Excitation Energy Transfer in Condensed Matter (North-Holland, New York, 1982)Google Scholar
  3. 3.
    E. Gantt: Ann. Rev. Plant. Physiol. 32, 327 (1981)CrossRefGoogle Scholar
  4. 4.
    A. N. Glazer: Ann. Rev. Biophys. Biophys. Chem. 14, 47 (1985)CrossRefGoogle Scholar
  5. 5.
    M. Hauser, U. K. A. Klein and U. Gösele: Z. Physik. Chem. NF. 101, S255 (1976)Google Scholar
  6. 6.
    G. Zumofen and A. Blumen: J. Chem. Phys. 76, 3713 (1982)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    J. Baumann and M. D. Fayer: J. Chem. Phys. 85, 4087 (1986)ADSCrossRefGoogle Scholar
  8. 8.
    I. Yamazaki, H. Kume, N. Tamai, H. Tsuchiya and K. Oba: Rev. Sci. Instrum. 56, 1187 (1985)ADSCrossRefGoogle Scholar
  9. 9.
    G. Porter, C. J. Tredwell, G. F. W. Searle and J. Barber: Biochim. Biophys. Acta 501, 232 (1978)CrossRefGoogle Scholar
  10. 10.
    T. Kobayashi, E. O. Degenkokb, R. Bersohn, P. M. Rentzepis, R. MacColl and D. S. Berns: Biochem. 18, 5073 (1979)CrossRefGoogle Scholar
  11. 11.
    I. Yamazaki, M. Mimuro, T. Murao, T. Yamazaki, K. Yoshihara and Y. Fujita: Photochem. Photobiol. 39, 233 (1984)CrossRefGoogle Scholar
  12. 12.
    M. Mimuro, I. Yamazaki, T. Yamazaki and Y. Fujita: Photochem. Photobiol. 41, 597 (1985)CrossRefGoogle Scholar
  13. 13.
    A. R. Holzwarth, J. Wendler and W. Wehrmeyer: Photochem. Photobiol. 36, 479 (1982)CrossRefGoogle Scholar
  14. 14.
    J. Wendler, W. John, H. Scheer and A. R. Holzwarth: Photochem. Photobiol. 44, 79 (1986)CrossRefGoogle Scholar
  15. 15.
    C. A. Hanzlik, L. E. Hancock, R. S. Knox, D. Guard-Friar and R. MacColl: J. Luminescence, 34, 99 (1985)ADSCrossRefGoogle Scholar
  16. 16.
    K. Ohki, M. Watanabe and Y. Fujita: Plant Cell Physiol. 23, 651 (1982)Google Scholar
  17. 17.
    E. Gantt and S. F. Conti: J. Cell Biol. 29, 423 (1966)CrossRefGoogle Scholar
  18. 18.
    H. Kuhn, D. Möbius and H. Bücher: In Techniques of Chemistry, ed. by A. Weissberger and B. W. Rossiter, Vol. 1, Part 3B (Wiley, New York, 1972)Google Scholar
  19. 19.
    H. Bücher, K. H. Dreshage, M. Fleck, H. Kuhn, D. Möbius, F. P. Schäfer, J. Sondermann, W. Sperling, P. Tillmann and J. Wiegand: Mol. Crystals, 2, 199 (1967).CrossRefGoogle Scholar
  20. 20.
    A. Leitner, M. E. Lippitsch, S. Draxler, M. Riegler and F. R. Aussenegg: Thin Solid Films, 132, 55 (1985)ADSCrossRefGoogle Scholar
  21. 21.
    N. Tamai, T. Yamazaki and I. Yamazaki: J. Phys. Chem. 91, (1987) in press.Google Scholar
  22. 22.
    I. Yamazaki, N. Tamai and T. Yamazaki: In Ultrafast Phenomena V, ed. by G. R. Fleming and A. E. Siegman, Springer Ser. Chem. Phys. Vol. 46 (Springer, Berlin, Heidelberg 1986) p. 444Google Scholar
  23. 23.
    T. Schirmer, W. Bode, R. Huber, W. Sidler and H. Zuber: J. Mol. Biol. 184, 257 (1985).CrossRefGoogle Scholar
  24. 24.
    M. Mimuro, P. Fuglistaller, R. Rumbeli and H. Zuber: Biochim. Biophys. Acta, 848, 155 (1986)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • I. Yamazaki
    • 1
  • N. Tamai
    • 1
  • T. Yamazaki
    • 1
  • M. Mimuro
    • 2
  • A. Murakami
    • 2
  • Y. Fujita
    • 2
  1. 1.Institute for Molecular ScienceMyodaiji, Okazaki, Aichi 444Japan
  2. 2.National Institute for Basic BiologyMyodaiji, Okazaki, Aichi 444Japan

Personalised recommendations