Vibrational and Electronic Dephasing Time Measurement with the Use of Temporally Incoherent Light

  • T. Hattori
  • A. Terasaki
  • T. Kobayashi
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 20)

Abstract

The dynamical properties of matter have been studied by increasing number of scientists, and information with higher time resolution is being obtained by the development of picosecond and femtosecond spectroscopies. Since picosecond light pulses were first emitted from passively mode-locked ruby laser in 1965 [1], continuous efforts to get shorter pulses have been made, and recently optical pulses as short as 8 fs were obtained [2] by the method of pulse compression of the output from a group-velocity-dispersion-compensated colliding-pulse mode-locked laser. Time-resolved coherent and conventional spectroscopies have been applied to several systems using ultrashort light pulses with pulse width of a few tens to a hundred femtoseconds. However, there are several difficulties in the study of the ultrafast phenomena using such short pulses: (i) Laser systems for the generation of ultrashort pulses are necessarily very expensive and complicated. (ii) The wavelengths of femtosecond laser pulses are limited in the region around 615–625 nm because of the lack of appropriate combination of saturable absorber and gain medium, and the tunability of each laser is generally poor. (iii) It is difficult to maintain a short pulse width in actual optical systems, since shorter pulse has broader power spectrum and suffers from dispersion broadening when it passes through ordinary dispersive or nonlinear materials.

Keywords

Cellulose DMSO Chloroform Coherence Beach 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.W. Mocker and R.J. Collins, Appl. Phys. Lett. 7, 270 (1965)ADSCrossRefGoogle Scholar
  2. 2.
    W.H. Knox, R.L. Fork, M.C. Downer, R.H. Stolen, and C.V. Shank, Appl. Phys. Lett. 46, 1120 (1985)ADSCrossRefGoogle Scholar
  3. 3.
    N. Morita and T. Yajima, Phys. Rev. A 30, 2525 (1984)ADSCrossRefGoogle Scholar
  4. 4.
    S. Asaka, H. Nakatsuka, N. Fujiwara, and M. Matsuoka, Phys. Rev. A 29, 2286 (1984)ADSCrossRefGoogle Scholar
  5. 5.
    R. Beach and S.R. Hartmann, Phys. Rev. Lett. 53, 663 (1984)ADSCrossRefGoogle Scholar
  6. 6.
    H. Nakatsuka, M. Tomita, M. Fujiwara, and S. Asaka, Opt. Commun. 52, 150 (1984)ADSCrossRefGoogle Scholar
  7. 7.
    M. Fujiwara, R. Kuroda and H. Nakatsuka, J. Opt. Soc. Am. B 2, 1634 (1985)ADSCrossRefGoogle Scholar
  8. 8.
    S.R. Meech, A.J. Hoff, and D.A. Wiersma, Chem. Phys. Lett. 121, 287 (1985)ADSCrossRefGoogle Scholar
  9. 9.
    T. Hattori and T. Kobayashi, Chem. Phys. Lett. 133, 230 (1987)ADSCrossRefGoogle Scholar
  10. 10.
    A.M. Weiner, S. De Silvestri, and E.P. Ippen, J. Opt. Soc. Am. B 2, 654 (1985)ADSCrossRefGoogle Scholar
  11. 11.
    A. Laubereau and W. Kaiser, Rev. Mod. Phys. 50, 607 (1978)ADSCrossRefGoogle Scholar
  12. 12.
    S.M. George, H. Auwester, and C.B. Harris, J. Chem. Phys. 73, 5573 (1980)ADSCrossRefGoogle Scholar
  13. 13.
    S.M. George, A.L. Harris, M. Berg, and C.B. Harris, J. Chem. Phys. 80, 83 (1984)ADSCrossRefGoogle Scholar
  14. 14.
    T. Hattori, A. Terasaki, and T. Kobayashi, Phys. Rev. A 35, 715 (1987)ADSCrossRefGoogle Scholar
  15. 15.
    S. Koshihara, T. Kobayashi, H. Uchiki, T. Kotaka, and H. Ohnuma, Chem. Phys. Lett. 114, 446 (1985)ADSCrossRefGoogle Scholar
  16. 16.
    G.M. Carter, J.V. Hryniewicz, M.K. Thakur, Y.J. Chen, and S.E. Meyler, Appl. Phys. Lett. 49, 998 (1986)ADSCrossRefGoogle Scholar
  17. 17.
    T. Kobayashi, J. Iwai, and M. Yoshizawa, Chen. Phys. Lett. 112, 360 (1984)ADSCrossRefGoogle Scholar
  18. 18.
    T. Kobayashi, H. Ikeda, and S. Tsuneyuki, Chem. Phys. Lett. 116, 515 (1985)ADSCrossRefGoogle Scholar
  19. 19.
    J. Orenstein, S. Etemad, and G.L. Baker, J. Phys. C 17, L297 (1984)ADSGoogle Scholar
  20. 20.
    L. Robins, J. Orenstein, and R. Superfine, Phys. Rev. Lett. 56, 1850 (1986)ADSCrossRefGoogle Scholar
  21. 21.
    W.M. Dennis, W. Blau, and D.J. Bradley, Appl. Phys. Lett. 47, 200 (1985)ADSCrossRefGoogle Scholar
  22. 22.
    G.M. Carter, M.K. Thakur, Y.J. Chen, and J.V. Hryniewicz, Appl. Phys. Lett. 47, 457 (1985)ADSCrossRefGoogle Scholar
  23. 23.
    D.N. Rao, P. Chopra, S.K. Ghoshal, J. Swiatkiewicz, and P.N. Prasad, J. Chem. Phys. 84, 7049 (1986)ADSCrossRefGoogle Scholar
  24. 24.
    T. Kanetake, Y. Tokura, T. Koda, T. Kotaka, and H. Ohnuma, J. Phys. Soo. Japan 54, 4014 (1985)ADSCrossRefGoogle Scholar
  25. 25.
    R.R. Chance, G.N. Patel, and J.D. Witt, J. Chem. Phys. 71, 206 (1979)ADSCrossRefGoogle Scholar
  26. 26.
    H. Sixl and R. Warta, Chem. Phys. Lett. 116, 307 (1985)ADSCrossRefGoogle Scholar
  27. 27.
    S.R. Hartmann, IEEE. J. Quant. Electron. QE-4, 802 (1968)ADSCrossRefGoogle Scholar
  28. 28.
    R.F. Loring and S. Mukamel, J. Chem. Phys. 83, 2116 (1985)ADSCrossRefGoogle Scholar
  29. 29.
    A.C. Eckbreth, Appl. Phys. Lett. 32, 421 (1978)ADSCrossRefGoogle Scholar
  30. 30.
    W. Zinth, H.-J. Polland, A. Laubereau, and W. Kaiser, Appl. Phys. B 26, 77 (1981)CrossRefGoogle Scholar
  31. 31.
    S.M. George and C.B. Harris, Phys. Rev. A 28, 863 (1983)ADSCrossRefGoogle Scholar
  32. 32.
    P. Hu, S. Geschwind, and T.M. Jedju, Phys. Rev. Lett. 37, 1357 (1976)ADSCrossRefGoogle Scholar
  33. 33.
    K.P. Leung, T.W. Mossberg, and S.R. Hartmann, Phys. Rev. A 25, 3097 (1982)ADSCrossRefGoogle Scholar
  34. 34.
    V. Brückner, E.A.J.M. Bente, J. Langelaar, and D. Bebelaar, Opt. Commun. 51, 49 (1984)ADSCrossRefGoogle Scholar
  35. 35.
    J.D.W. van Voorst, D. Brandt, and B.L. van Hensbergen, in Technical Digest of Topical Meeting on Ultrafast Phenomena, (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • T. Hattori
    • 1
  • A. Terasaki
    • 1
  • T. Kobayashi
    • 1
  1. 1.Department of Physics, Faculty of ScienceUniversity of TokyoBunkyo-ku, Tokyo 113Japan

Personalised recommendations