Effect of Surface and Membrane Potentials on IAA Uptake and Binding by Zucchini Membrane Vesicles

  • Kathleen A. Clark
  • Mary Helen M. Goldsmith
Conference paper
Part of the NATO ASI Series book series (volume 10)


The polar transport of the endogenous hormone controlling extension growth of plant cells, indoleacetic acid (IAA), is thought to depend on transmembrane pH and electrical gradients resulting in part from the action of proton ATPases in the plasma membrane. According to a recent hypothesis (see Goldsmith, 1977 for review), elements of this transport process are: (1) permeation of the membrane by the undissociated lipophilic indoleacetic acid (IAAH) from the acidic apoplast, followed by dissociation of the weak acid and accumulation of the IAA anion (IAA-) in the alkaline cytoplasm; (2) a saturable symport of IAA- with one or more protons; (3) a carrier-mediated efflux of IAA- down a considerable electrochemical gradient. The efflux is greater from the basal than the apical end of cells and is thought to be responsible for the overall polarity of the process. This step is also the site of action of napthylphthalamic acid (NPA) and herbicides that inhibit polar transport but stimulate net accumulation of auxin by tissues and cells (Sussman & Goldsmith, 1981a&b; Thomson et al, 1973).


Ionic Strength Diffusion Potential Voltage Gradient Polar Transport Negative Membrane Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen OS, Feldberg S, Nakadomari H, Levy S, McLaughlin S (1978) Biophys J 21: 35PubMedCrossRefGoogle Scholar
  2. Beeler TJ, Farmen RH, Martonosi AN (1981) J Membrane Biol 62: 113CrossRefGoogle Scholar
  3. Bradford MM (1976) Anal Biochem 72: 248PubMedCrossRefGoogle Scholar
  4. Clark KA, Goldsmith MHM (1986) In: Bopp M (ed) Plant Growth Substances 1985. Springer-Verlag, Berlin/Heidelberg, p 203Google Scholar
  5. Goldsmith MHM (1977) Annu Rev Plant Physiol (Bethesda) 28: 439CrossRefGoogle Scholar
  6. Gutknecht J, Walter A (1980) J Membrane Biol 56: 65CrossRefGoogle Scholar
  7. Hertel R (1983) Z Pflanzenphysiol 112: 53Google Scholar
  8. Hertel R (1986) In: Bopp M (ed) Plant Growth Substances 1985. Springer-Verlag, Berlin/Heidelberg, p 214Google Scholar
  9. Hertel R, Lomax TL, Briggs WR (1983) Planta (Berl) 157: 193CrossRefGoogle Scholar
  10. Lomax TL, Mehlhorn RJ, Briggs WR (1985) Proc Natl Acad Sci USA 82: 6541PubMedCrossRefGoogle Scholar
  11. McLaughlin S (1977) Curr Top Membranes Transport 9: 71CrossRefGoogle Scholar
  12. Raven JA (1975) New Phytol 74: 163CrossRefGoogle Scholar
  13. Rottenberg H (1979) Methods Enzymol 55: 547PubMedCrossRefGoogle Scholar
  14. Sussman MR, Goldsmith MHM (1981a) Planta (Berl) 151: 15CrossRefGoogle Scholar
  15. Sussman MR, Goldsmith MHM (1981b) Planta (Berl) 152: 13CrossRefGoogle Scholar
  16. Thomson K-St, Hertel R, Miller S, Tavares JE (1973) Planta (Berl) 109: 337CrossRefGoogle Scholar
  17. Waggoner AS (1979) Annu Rev Biophys Bioeng 8: 47PubMedCrossRefGoogle Scholar
  18. Weigl J (1969) Z Naturforsch 24b: 365Google Scholar
  19. Zimmermann U, Ashcroft RG, Coster HGL, Smith JR (1977) Biochim Biophys Acta 469: 23PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Kathleen A. Clark
    • 1
  • Mary Helen M. Goldsmith
    • 1
  1. 1.Biology Department, Kline Biology TowerYale UniversityNew HavenUSA

Personalised recommendations