Skip to main content

The Mechanisms of Action of Antipsychotics and Antidepressant Drugs

  • Conference paper
Neuroendocrinology of Mood

Part of the book series: Current Topics in Neuroendocrinology ((CT NEUROENDOCRI,volume 8))

Abstract

The introduction of neuroleptics and tricyclic antidepressant drugs represents a major breakthrough in the treatment of psychiatric disorders. The changes of central monoamine metabolism induced by these psychoactive compounds are still the basis for current theories on the role of the monoamines in the pathophysiol- ogy of psychosis and depression. The depressive disorders have been linked with the functional state of noradrenergic and serotoninergic neurons, schizophrenia mainly with the transmission of dopaminergic neurons. The effects of antipsychotics and antidepressants in psychiatric patients demonstrate the importance of the interplay between basic and clinical science in the understanding and the treatment of psychiatric disorders. The mechanism of action of these two major groups of psychopharmacological drugs will be discussed within a clinical framework.

The work reported here has been supported by the Swedish Medical Research Council (714/85, 5454 and 7027), Karolinska Institute and the Swedish Medical Society

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Åberg-Wistedt A (1982) A double-blind study of Zimelidine, a serotonin uptake inhibitor, and desipramine, a noradrenaline uptake inhibitor in endogenous depression. I Clinical Findings. Acta Psychiatr Scand 66: 50–65

    Article  Google Scholar 

  • Ågren H, Mefford IN, Rudorfer MV, Linnoila M, Potter WZ (1986) Interacting neuro-transmitter systems. A non-experimental approach to the 5HIAA-HVA correlation in human CSF. J Psychiatr Res 20(3): 175–193

    Google Scholar 

  • Alfredsson G, Bjerkenstedt L, Edman G, Härnryd C, Oxenstierna G, Sedvall G, Wiesel F-A (1984) Relationships between drug concentrations in serum and CSF, clinical effects and monoaminergic variables in schizophrenic patients treated with sulpride or chlor-promazine. Acta Psychiatr Scand 69 [suppl 311]: 49–74

    Article  Google Scholar 

  • Alfredsson G, Wiesel F-A, Tylec A (1988) Relationships between glutamate and mono-amine metabolites in cerebrospinal fluid and serum. Biol Psychiatry (to be published)

    Google Scholar 

  • Anden N-E, Roos B-E, Werdinius B (1964) Effects of chlorpromazine, haloperidol and re-serpine on the levels of phenolic acid in rabbit corpus striatum. Life Sci 3: 149–158

    Article  CAS  Google Scholar 

  • Andreasen NC (1985) Positive vs. negative schizophrenia: a critical evaluation. Schizophr Bull 11: 380–389

    PubMed  CAS  Google Scholar 

  • Andreasen NC, Olsen SA, Dennert JW, Smith MR (1982) Ventricular enlargement in schizophrenia: relationship to positive and negative symptoms. Am J Psychiatry 139: 297–302

    PubMed  CAS  Google Scholar 

  • Angrist B, Rotrosen J, Gershon S (1980) Responses to apomorphine, amphetamine, and neuroleptics in schizophrenic subjects. Psychopharmacology 67: 31–38

    Article  PubMed  CAS  Google Scholar 

  • Åsberg M, Bertilsson L, Tuck D, Cronholm B, Sjöqvist F (1973) Indole amine metabolites in the cerebrospinal fluid of depressed patients before and during treatment with nor-triptyline. Clin Pharmacol Ther 14: 227–286

    Google Scholar 

  • Axelrod J, Whitby LG, Hertting G (1961) Effect of psychtropic drugs on the uptake of 3H-norepinephrine by tissues. Science 133: 383–384

    Article  PubMed  CAS  Google Scholar 

  • Bacopoulos NG (1984) Dopaminergic 3H-agonists receptors in rat brain: new evidence on localization and pharmacology. Life Sci 34: 307–315

    Article  PubMed  CAS  Google Scholar 

  • Bacopoulos NG, Hattox SE, Roth RH (1979) 3,4-Dihydroxyphenylacetic acid and homovanillic acid in rat plasma: possible indicators of central dopaminergic activity. Eur J Pharmacol 56: 225–236

    Article  PubMed  CAS  Google Scholar 

  • Baldessarini RJ, Katz B, Cotton P (1984) Dissimilar dosing with high-potency neuroleptics. Am J Psychiatry 141: 748–752

    PubMed  CAS  Google Scholar 

  • Bannon MJ, Roth RH (1983) Pharmacology of mesocortical dopamine neurons. Pharmacol Rev 35: 53–68

    PubMed  CAS  Google Scholar 

  • Beckmann H, Goodwin FK (1975) Antidepressant response to tricyclics and urinary MHPG in unipolar patients. Arch Gen Psychiatry 32: 17–21

    PubMed  CAS  Google Scholar 

  • Beckmann H, Murphy DL (1977) Phenelzine in depressed patients: effects on urinary MHPG excretion in relation to clinical response. Neuropsychobiology 3: 49–55

    Article  PubMed  CAS  Google Scholar 

  • Bertilsson L, Tuck JR, Siwers B (1980) Biochemical effects of zimelidine in man. Eur J Clin Pharmacol 18: 483–487

    Article  PubMed  CAS  Google Scholar 

  • Bissette G, Nemeroff CB (1985) Do neuropeptide systems mediate some of the effects of antipsychotic drugs? Prog Clin Biol Res 192: 349–353

    PubMed  CAS  Google Scholar 

  • Bjerkenstedt L, Gullberg B, Härnryd C, Sedvall G (1977) Monoamine metabolite levels in cerebrospinal fluid of psychotic women treated with melperone or thiothixene. Arch Psychiatr Nervenkr 224: 107–118

    Article  PubMed  CAS  Google Scholar 

  • Bjerkenstedt L, Härnryd C, Grimm V, Gullberg B, Sedvall G (1978) A double-blind comparison of melperone and thiothixene in psychotic women using a new rating scale, the CPRS. Arch Psychiatr Nervenkr 226: 157–172

    Article  PubMed  CAS  Google Scholar 

  • Bjerkenstedt L, Gullberg B, Härnryd C, Sedvall G (1979) Relationships between clinical and biochemical effects of melperone and thiothixene in psychotic women. Arch Psychiatr Nervenkr 227: 181–192

    Article  PubMed  CAS  Google Scholar 

  • Bland RD, Orn H (1978) 14 year outcome in early schizophrenia. Acta Psychiatr Scand 58: 327–338

    Article  PubMed  CAS  Google Scholar 

  • Borison RL, Hitri A, Blowers AJ, Diamond BI (1983) Antipsychotic drug action: clinical, biochemical and pharmacological evidence for site specificity of action. Clin Neuro-pharmacol 6: 137–150

    CAS  Google Scholar 

  • Bowers MB, Heninger GR (1981) Cerebrospinal fluid homovanillic acid patterns during neuroleptic treatment. Psychiatry Res 4: 285–290

    Article  PubMed  Google Scholar 

  • Bowers MB, Swigar ME, Jatlow PI, Goicoecha N (1984) Plasma catecholamine metabolites and early response to haloperidol. J Clin Psychiatry 6: 248–251

    Google Scholar 

  • Brunello N, Chuang DM, Costa E (1982) Use of specific brain lesions to study the site of action of antidepressants. Adv Biosci 40: 141–145

    CAS  Google Scholar 

  • Bunney BS (1984) Antipsychotic drug effects on the electrical activity of dopaminergic neurons. TINS 7: 212–215

    CAS  Google Scholar 

  • Burt DR, Creese I, Snyder SH (1977) Antischizophrenic drugs: chronic treatment elevates dopamine receptor binding. Science 196: 326–327

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A (1974) Antipsychotic drugs and catecholamine synapses. J Psychiatr Res 11: 57–64

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A (1984) Current theories on the mode of action of antidepressant drugs. Adv Biochem Psychopharmacol 39: 213–221

    PubMed  CAS  Google Scholar 

  • Carlsson A, Hillarp NÅ (1956) Release of adrenaline from the adrenal medulla of rabbits produced by reserpine. Kgl Fysiogr Sällsk Lund Förh 26(8)

    Google Scholar 

  • Carlsson A, Lindqvist M (1963) Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol 20: 140–144

    Article  CAS  Google Scholar 

  • Carlsson A, Lindqvist M, Magnusson T, Waldeck B (1958) On the presence of 3-hydroxy-tyramine in brain. Science 127: 471

    Article  PubMed  CAS  Google Scholar 

  • Cesarec Z, Nyman AK (1985) Differential response to amphetamine in schizophrenia. Acta Psychiatr Scand 71: 523–538

    Article  PubMed  CAS  Google Scholar 

  • Chouinard G, Jones BD (1980) Neuroleptic induced supersensitivity psychosis: clinical and pharmacologic characteristics. Am J Psychiatry 137: 16–21

    PubMed  CAS  Google Scholar 

  • Christensen E (1988) Pharmacologie data of the atypical neuroleptic compound mel-perone. Acta Psychiatr Scand [suppl] (to be published)

    Google Scholar 

  • Claghorn JL, Mathew RJ (1981) Clinical trials with new bicyclic and tetracyclic compounds: zimelidine and maprotiline. Psychopharmacol Bull 17: 23–26

    PubMed  CAS  Google Scholar 

  • Clement-Cormier YC, Kebabian JW, Petzold GL, Greengard P (1974) Dopamine-sensitive adenylate cyclase in mammalian brain: a possible site of action of antipsychotic drugs. Proc Natl Acad Sci USA 71: 1113–1117

    Article  PubMed  CAS  Google Scholar 

  • Cobbin DM, Requin-Blow B, Williams LR, Williams WO (1979) Urinary MHPG levels and tricyclic antidepressant drug selection: a preliminary communication on improved drug selection in clinical practice. Arch Gen Psychiatry 36: 1111–1115

    PubMed  CAS  Google Scholar 

  • Corrodi H, Fuxe K (1969) Decreased turnover in central 5-HT nerve terminals induced by antidepressant drugs of the imipramine type. Eur J Pharmacol 7: 56–59

    Article  PubMed  CAS  Google Scholar 

  • Costa E (1982) Perspectives in the molecular mechanisms of antidepressant action. In: Costa E, Racagni G (eds) Typical and atypical antidepressants: molecular mechanisms. Raven, New York, pp 21–26

    Google Scholar 

  • Cowdry RW, Goodwin FK (1978) Amine neurotransmitter studies and psychiatric illness: toward more meaningful diagnostic concepts. In: Spitzer RL, Klein DF (eds) Critical issues in Psychiatric diagnosis. Raven, New York, pp 281–304

    Google Scholar 

  • Creese I, Burt DR, Snyder SH (1975) Dopamine receptor binding: differentiation of agonist and antagonist states with 3H-dopamine and 3H-haloperidol. Life Sci 17: 993–1002

    Article  CAS  Google Scholar 

  • Creese I, Burt DR, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192: 481–483

    Article  PubMed  CAS  Google Scholar 

  • Crews FT, Smith CB (1978) Presynaptic alpha-receptor subsensitivity after long-term antidepressant treatment. Science 202: 322–324

    Article  PubMed  CAS  Google Scholar 

  • Cross AJ, Crow TJ, Ferrier IN, Johnson JA, Johnstone EC, Owen F, Owens DGC, Poulter M (1985) Chemical and structural changes in the brain in patients with movement disorder. In: Casey DE, Chase TN, Christensen AV, Gerlach J (eds) Dyskinesia — research and treatment. Springer, Berlin Heidelberg New York (Psychopharmacology Supple-mentum 2, pp 104–110)

    Chapter  Google Scholar 

  • Crow TJ (1980) Molecular pathology of schizophrenia: more than one disease process? Br Med J 280: 66–68

    Article  PubMed  CAS  Google Scholar 

  • Crow TJ, MacMillan JF, Johnson AL, Johnstone EC (1986) A randomized controlled trial of prophylactc neuroleptic treatment. Br J Psychiatry 148: 120–127

    Article  PubMed  CAS  Google Scholar 

  • Curzon B, Gumpert EJW, Sharpe DM (1971) Amine metabolites in the lumbar cerebrospi-nal fluid of humans with restricted flow of cerebrospinal fluid. Nature 231: 189–191

    CAS  Google Scholar 

  • Davis JM (1985) Maintenance therapy and the natural course of schizophrenia. J Clin Psychiatry 11: 18–21

    Google Scholar 

  • Davis JM, Garver DL (1978) Neuroleptics: clinical use in psychiatry. In: Iverson LL, Iver-son SD, Snyder SH (eds) Handbook of psychopharmacology. Neuroleptics and schizophrenia, vol 10. Plenum, New York

    Google Scholar 

  • Davis JM, Schaffer CB, Killian GA, Kinard C, Chan C (1980) Important issues in the drug treatment of schizophrenia. Schizophr Bull 6: 70–87

    PubMed  CAS  Google Scholar 

  • Davis KL, Davidson M, Mohs RC, Kendler KS, Davis BM, Johns CA, DeNegris Y, Hor-vath TG (1985) Plasma homovanillic acid concentrations and the severity of schizophrenic illness. Science 227: 1601–1602

    Article  PubMed  CAS  Google Scholar 

  • De Keyser J, De Backer J-P, Ebinger G, Vauquelin G (1985) Regional distribution of the dopamine D2 receptors in the mesotelencephalic dopamine neuron system of human brain. J Neurol Sci 71: 119–127

    Article  PubMed  Google Scholar 

  • Delay J, Deniker O (1957) Caractéristiques psycho-physiologiques des medicaments neuroleptiques. In: Garattini S, Ghetti V (eds) The psychotropic drugs. Elsevier, Amsterdam, pp 485–501

    Google Scholar 

  • De Montigny C, Grunberg F, Mayer A, Deschenes JP (1981) Lithium induces rapid relief of depression in tricyclic antidepressant non-responders. Br J Psychiatry 138: 252–256

    Article  PubMed  Google Scholar 

  • Elizur A, Davidson S, Psych FRC (1975) The evaluation of the anti-autistic activity of sul-piride. Curr Ther Res 18: 578–584

    PubMed  CAS  Google Scholar 

  • Ekblom E, Eriksson K, Lindström LH (1984) Supersensitivity psychosis in schizophrenic patients after sudden clozapine withdrawal. Psychopharmacology 83: 293–294

    Article  PubMed  CAS  Google Scholar 

  • Falloon JRH, Boyd JL, McGill CW, Williamson M, Razani J, Moss HB, Gilderman AM, Simpson GM (1985) Family management in the prevention of morbidity of schizophrenia. Arch Gen Psychiatry 42: 887–896

    PubMed  CAS  Google Scholar 

  • Farde L, Ehrin E, Eriksson L, Greitz T, Hall H, Hedström C-G, Litton J-E, Sedvall G (1985) Substituted benzamides as ligands for visualization of dopamine receptor binding in the human brain by positron emission tomography. Proc Natl Acad Sci USA 82: 3863–3867

    Article  PubMed  CAS  Google Scholar 

  • Farde L, Hall H, Ehrin E, Sedvall G (1986) Quantitative analysis of dopamine D2 receptor binding in the living human brain by positron emission tomography. Science 231: 258–261

    Article  PubMed  CAS  Google Scholar 

  • Farde L, Halldin C, Stone-Elander S, Sedvall G (1987) PET analysis of human dopamine receptor subtypes using 11C-SCH 23390 and 11C-raclopride. Psychopharmacology 92: 278–284

    Article  PubMed  CAS  Google Scholar 

  • Farde L, Wiesel F-A, Halldin C, Sedvall G (1988) Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Arch Gen Psychiatry 45: 71–76

    PubMed  CAS  Google Scholar 

  • Fibinger HC, Lloyd KG (1984) Neurobiological substrates of tardive dyskinesia: the GABA hypothesis. TINS 462–464

    Google Scholar 

  • Fuxe K, Ögren SO, Agnati LF (1979) The effects of chronic treatment with the 5-hydroxy-tryptamine uptake blocker zimelidine on central 5-hydroxytryptamine mechanism. Evidence for the induction of a low affinity binding site for 5-hydroxytryptamine. Neurosci Lett 13: 307–312

    CAS  Google Scholar 

  • Gale K, Casu M (1981) Dynamic utilization of GABA in substantia nigra: regulation by dopamine and GABA in the striatum, and its clinical and behavioural implications. Mol Cell Biochem 39: 369–405

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Sevilla JA, Zis AP, Zelnik TC, Smith CB (1981) Tricyclic antidepressant drag treatment decreases alpha-2 adrenoreceptors on human platelet membranes. Eur J Pharmacol 69: 121–123

    Article  PubMed  CAS  Google Scholar 

  • Gerlach J (1985) Pathophysiological mechanisms underlying tardive dyskinesia. In: Casey E, Chase T, Christensen AV, Gerlach J (eds) Dsykinesia — research and treatment. Springer, Berlin Heidelberg New York (Psychopharmacology suppl 2, pp 98–103)

    Google Scholar 

  • Gerlach J, Lühdorf K (1975) The effect of L-Dopa on young patients with simple schizophrenia, treated with neuroleptic drugs. A double-blind cross-over trial with Madopar and placebo. Psychopharmacologia 44: 105–110

    CAS  Google Scholar 

  • Goldberg SC (1985) Negative and deficit symptoms in schizophrenia do respond to neuro-leptics. Schizophr Bull 11: 453–456

    PubMed  CAS  Google Scholar 

  • Goldstein MJ, Rodnick EH, Evans JR, May PRA, Steinberg MR (1978) Drug and family therapy in the aftercare of acute schizophrenics. Arch Gen Psychiatry 35: 1169–1177

    PubMed  CAS  Google Scholar 

  • Goodwin FK, Post RM, Sack RL (1975) Clinical evidence for neurochemical adaption to psychotropic drugs. In: Mandali EJ (ed) Neurobiological mechanisms of adaption and behavior. Raven New York, pp 33–45

    Google Scholar 

  • Gordon E, Perlow M, Oliver J, Ebert M, Kopin I (1975) Origins of catecholamine metabolites in monkey cerebrospinal fluid. J Neurochem 25: 347–349

    Article  PubMed  CAS  Google Scholar 

  • Gunne L-M, Häggström J-E, Sjöquist B (1984) Association with persistent neuroleptic induced dyskinesia of regional changes in brain GABA synthesis. Nature 309: 347–349

    Article  PubMed  CAS  Google Scholar 

  • Haase HJ, Floru L, Ulrich F (1974) Klinisch, neuroleptische Untersuchung des N-(1-Äthyl-Pyrrolidin-2-yl-Methyl)-2 Methoxy-5-Sulfamoyl-Benzamide-Neurolepticums Sulpirid (Dogmatil) in akut erkrankten Schizophrenen. Int Pharmacopsychiatry 9: 77–94

    PubMed  CAS  Google Scholar 

  • Härnryd C, Bjerkenstedt L, Björk K, Gullberg B, Oxenstierna G, Sedvall G, Wiesel F-A, Wik G, Åberg-Wistedt A (1984a) Clinical evaluation of sulpiride in schizophrenic patients — a double-blind comparison with chlorpromazine. Acta Psychiatr Scand [suppl] 69: 17–30

    Google Scholar 

  • Härnryd C, Bjerkenstedt L, Gullberg B, Oxenstierna G, Sedvall G, Wiesel F-A (1984b) Time course for effects of sulpiride and chlorpromazine on monoamine metabolite and prolactin levels in cerebrospinal fluid from schizophrenic patients. Acta Psychiatr Scand [suppl] 69: 75–92

    Article  Google Scholar 

  • Harris PQ, Brown SJ, Friedman J, Bacopoulos NG (1984) Plasma drug and homovanillic acid levels in psychotic patients receiving neuroleptics. Biol Psychiatry 19: 849–860

    PubMed  CAS  Google Scholar 

  • Harris TH (1957) Depression induced by Rauwolfia compounds. Am J Psychiatry 113: 950

    PubMed  CAS  Google Scholar 

  • Hogarty GE, Goldberg SC, Scholler NR (1974) Drug and sociotherapy in the aftercare of schizophrenic patients. Arch Gen Psychiatry 31: 609–618

    PubMed  CAS  Google Scholar 

  • Honigfeld G, Patin J, Singer J (1984) Clozapine: antipsychotic activity in treatment-resistant schizophrenics. Adv Ther 1: 77–97

    Google Scholar 

  • Hwang EC, Van Woert MH (1980) Acute versus chronic effects of serotonin uptake blockers on potentiation of the “serotonin syndrome”. Commun Psychopharmacol 4: 161–167

    PubMed  CAS  Google Scholar 

  • Janowsky A, Okada F, Mahler DH, Applegate CD, Sulser F, Steranka LR (1982) Role of serotonergic input in the regulation of the beta-adrenergic receptor-coupled adenylate update system. Science 218: 900–901

    Article  PubMed  CAS  Google Scholar 

  • Jenner P, Rupniak NMJ, Marsden CD (1985) Differential alteration of striatal D-l and D-2 receptors induced by the long-term administration of haloperidol, sulpiride or clozapine to rats. In: Casey DE, Chase TN, Christensen AV, Gerlach J (eds) Dyskinesia — research and treatment, suppl 2. Springer, Berlin Heidelberg New York, pp 174–181

    Chapter  Google Scholar 

  • Johnson RW, Reisine T, Spotnitz S, Wiech N, Ursillo R, Yamamura HI (1980) Effects of desipramine and yohimbine on α2 and β-receptor sensitivity. Eur J Pharmacol 67: 123–127

    Article  PubMed  CAS  Google Scholar 

  • Johnstone EC (1985) Acute schizophrenia. Br J Hosp Med 34: 198–201

    PubMed  CAS  Google Scholar 

  • Johnstone EC, Crow TJ, Frith CD, Carney MWP, Price JS (1978) Mechanism of the antipsychotic effect in the treatment of acute schizophrenia. Lancet 1: 848–851

    Article  PubMed  CAS  Google Scholar 

  • Jones RSG (1980) Long-term administration of atropine, imipramine and viloxazine alters responsiveness of rat cortical neurones to acetylcholine. Can J Physiol Pharmacol 58: 531–535

    Article  PubMed  CAS  Google Scholar 

  • Karobath M, Leitich H (1974) Antipsychotic drugs and dopamine-stimulated adenylate cyclase prepared from corpus striatum of rat brain. In: Proc Natl Acad Sci USA 71: 2915–2918

    Article  CAS  Google Scholar 

  • Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 277: 93–96

    Article  PubMed  CAS  Google Scholar 

  • Kebabian JW, Petzold GL, Greengard P (1972) Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to the “dopamine receptor”. Proc Natl Acad Sci USA 69: 2145–2149

    Article  PubMed  CAS  Google Scholar 

  • Kellar KJ, Cascio CS, Butler JA, Kurtzke RN (1981) Differential effects of electroconvul-sive shock and antidepressant drugs on serotonin-2 receptors in rat brain. Eur J Pharmacol 69: 515–518

    Article  PubMed  CAS  Google Scholar 

  • Kirkegaard A, Kirkegaard G, Geismar L, Christensen I (1981) Additional studies on side effects of melperone in long-term therapy for 1 to 15 years in psychiatric patients. Arzneimittelforschung 31: 737–740

    PubMed  CAS  Google Scholar 

  • Kuha S, Miettinen E (1986) Long-term effect of clozapine in schizophrenia. Nord Psykiatr Tidsskr 40: 225–230

    Article  Google Scholar 

  • Kuhn R (1957) Über die Behandlung depressiver Zustände mit einem Iminodibenzylderi-vat (G 22355). Schweiz Med Wochenschr 87: 1135–1140

    PubMed  CAS  Google Scholar 

  • Larsson M, Öhman R, Wallin L, Wålinder J, Carlsson A (1984) Antipsychotic treatment with alfa-methyltyrosine in combination with thioridazine: prolactin response and interaction with dopaminergic precursor pools. J Neural Transm 60: 115–132

    Article  PubMed  CAS  Google Scholar 

  • Leff ST, Creese I (1983) Dopaminergic D-3 binding sites are not presynaptic autoreceptors. Nature 306: 586–589

    Article  PubMed  CAS  Google Scholar 

  • Leff J, Kuipers L, Berkowitz, Sturgeon D (1985) A controlled trial of social intervention in the families of schizophrenic patients: to year follow-up. Br J Psychiatry 146: 594–600

    Article  PubMed  CAS  Google Scholar 

  • Leonard BE (1984) Pharmacology of new antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 8: 97–108

    Article  PubMed  CAS  Google Scholar 

  • Lerer B, Ebstein RP, Belmaker RH (1981) Subsensitivity of human beta-andrenergic adenylate cyclase after salbutamol treatment of depression. Psychopharmacology 75: 169–172

    Article  PubMed  CAS  Google Scholar 

  • Lindwall O, Björklund A (1978) Organization of catecholamine neurons in the rat central nervous system. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of psycho-pharmacology, vol 9. Plenum, New York, pp 139–231

    Google Scholar 

  • Ljungberg T, Ungerstedt U (1978) Classification of neuroleptic drugs according to their ability to inhibit apomorphine-induced locomotion and gnawing: evidence for two different mechanisms of action. Psychopharmacology 56: 239–247

    Article  PubMed  CAS  Google Scholar 

  • Loomer HP, Saunders JC, Kline NS (1957) A clinical and pharmacodynamic evaluation of iproniazid as a psychic energizer. Psychiatr Res Rep 8: 129–141

    CAS  Google Scholar 

  • Maas R, Fawcett JA, DeKirmenjian H (1972) Catecholamine metabolism, depressive illness and drug response. Arch Gen Psychiatry 26: 252–262

    PubMed  CAS  Google Scholar 

  • Maas JW, Koslow SH, Katz MM, Bowden CL, Gibbons RL, Stokes PE, Robins E, Davis JM (1984) Pretreatment neurotransmitter metabolite levels and response to tricyclic antidepressant drugs. Am J Psychiatry 141 (10): 1159–1171

    Google Scholar 

  • Maj J, Mogilnicka E, Kordecka A (1979a) Chronic treatment with antidepressant drugs: potentiation of apomorphine-induced aggressive behaviour in rats. Neurosci Lett 13: 337–341

    Article  PubMed  CAS  Google Scholar 

  • Maj J, Palider W, Rawlow A (1979b) Trazodone, a central serotonin antagonist and agonist. J Neural Transm 44: 237–248

    Article  PubMed  CAS  Google Scholar 

  • Manchanda R, Hirsch SR (1986) Low dose maintenance medication for schizophrenia. Br Med J 293: 515–516

    Article  CAS  Google Scholar 

  • May PRA, Tuma AH, Dixon WJ, Yale C, Thiele DA, Kraude WH (1981) Schizophrenia: a follow-up study of the results of five forms of treatment. Arch Gen Psychiatry 38: 776–784

    PubMed  CAS  Google Scholar 

  • Menkes DB, Aghajanian GK (1981) α1-Adrenoceptor-mediated responses in the lateral geniculate nucleus are enhanced by chronic antidepressant treatment. Eur J Pharmacol 74: 27–36

    Article  PubMed  CAS  Google Scholar 

  • Miller RJ, Hiley CR (1974) Anti-muscarinic properties of neuroleptics and drug-induced parkinsonism. Nature 248: 596–597

    Article  PubMed  CAS  Google Scholar 

  • Modai I, Apter A, Golomb M, Wijsenbeek H (1979) Response to amitriptyline and urinary MHPG in bipolar depressive patients. Neuropsychobiology 5: 181–184

    Article  PubMed  CAS  Google Scholar 

  • Modigh K (1975) Electroconvulsive shock and postsynaptic catecholamine effects: increased psychomotor stimulant action of apomorphine and clonidine in reserpine pre-treated mice by repeated ECS. J Neural Transm 36: 19–32

    Article  PubMed  CAS  Google Scholar 

  • Müller P, Seeman P (1978) Dopaminergic supersensitivity after neuroleptics: time course and specificity. Psychopharmacology 60: 1–11

    Article  PubMed  Google Scholar 

  • Nybäck H, Sedvall G (1968) Effect of chlorpromazine on accumulation and disappearance of catecholamine formed from tyrosine-14C in brain. J Pharmacol Exp Ther 162: 294–301

    PubMed  Google Scholar 

  • Nybäck H, Sedvall G (1970) Further studies on the accumulation and disappearance of cat-echolamines formed tyrosine-14C in mouse brain. Effect of some phenothiazine analogues. Eur J Pharmacol 10: 193–205

    Google Scholar 

  • Nybäck HV, Walters JV, Aghajanian GK, Roth RH (1975) Tricyclic antidepressants. Effects on the firing rate of brain noradrenergic neurons. Eur J Pharmacol 32: 302–312

    Google Scholar 

  • Paul SM, Crews FM (1980) Rapid desensitization of cerebral cortical β-adrenergic receptors induced by desmethylimipramine and phenoxybenzamine. Eur J Pharmacol 62: 349–350

    Article  PubMed  CAS  Google Scholar 

  • Peroutka SJ, Snyder SH (1980a) Long-term antidepressant treatment decreases spiroperi-dol-labeled serotonin receptor binding. Science 210: 88–90

    Article  PubMed  CAS  Google Scholar 

  • Peroutka SJ, Snyder SH (1980b) Relationship of neuroleptic drug effects at brain dopa-mine, serotonin, alfa-adrenergic, and histamine receptors to clinical potency. Am J Psychiatry 137: 1518–1522

    PubMed  CAS  Google Scholar 

  • Pickar D, Labarca R, Linnoila M, Roy A, Hommer D, Everett D, Paul SM (1984) Neuro-leptic-induced decrease in plasma homovanillic acid and antipsychotic activity in schizophrenic patients. Science 225: 954–957

    Article  PubMed  CAS  Google Scholar 

  • Pickar D, Labarca R, Doran AR, Wolkowitz OM, Roy A, Breier A, Linnoila M, Paul SM (1986) Longitudinal measurement of plasma homovanillic acid levels in schizophrenic patients. Arch Gen Psychiatry 43: 669–676

    PubMed  CAS  Google Scholar 

  • Post RM, Goodwin FK, Gordon E, Watkin DM (1973) Amine metabolites in human ce-rebrospinal fluid. Effect of cord transection and spinal fluid block. Science 179: 897–899

    CAS  Google Scholar 

  • Povlsen UJ, Noring U, Fog R, Gerlach J (1985) Tolerability and therapeutic effect of cloza-pine. Acta Psychiatr Scand 71: 176–185

    Article  Google Scholar 

  • Potter WZ, Scheinin M, Golden RN, Rudorfer MV, Cowdry RW, Calil HM, Ross RJ, Linnoila M (1985) Selective antidepressants and cerebrospinal fluid. Lack of specificity on norepinephrine and serotonin metabolites. Arch Gen Psychiatry 42: 1171–1177

    CAS  Google Scholar 

  • Prange AJ, Wilson IC, Knox A, McClane TK, Lipton MA (1970) Enhancement of imi-pramine by thyroid stimulating hormone: clinical and theoretical implications. Am Psychiatry 127: 191–199

    Google Scholar 

  • Ravaris CL, Nies A, Robinson DS, Ives JO, Lamborn KR, Korson A (1976) A multiple dose controlled study of phenelzine in depression anxiety states. Arch Gen Psychiatry 33: 347–350

    PubMed  CAS  Google Scholar 

  • Rifkin A, Quitkin F, Klein DF (1978) Are prophylactic antiparkinson drugs necessary? Arch Gen Psychiatry 32: 672–674

    Google Scholar 

  • Scatton B, Bischoff S, Dedek J, Korf J (1977) Regional effects of neuroleptics on dopamine metabolism and dopamine-sensitive adenylate cyclase activity. Eur J Pharmacol 44: 287–292

    Article  PubMed  CAS  Google Scholar 

  • Schatzberg AF, Rosenbaum AH, Orsulak PJ, Rohde WA, Maruta T, Kruger ER, Cole JO, Schildkraut JJ (1981) Toward a biochemical classification of depressive disorders. III. Pretreatment urinary MHPG levels as predictors of response to treatment with mapro-tiline. Psychopharmacology 75: 34–38

    CAS  Google Scholar 

  • Sedvall G, Mayevsky A, Fri C-G, Sjöquist B, Samuel D (1973) The use of stable oxygen isotopes for labelling of homovanillic acid in rat brain in vivo. Adv Biochem Psycho-pharmacol 7: 57–68

    CAS  Google Scholar 

  • Sedvall G, Alfredsson G, Bjerkenstedt L, Eneroth P, Fryö B, Härnryd C, Swahn C-G, Wiesel F-A, Wode-Helgodt B (1975) Selective effects of psychoactive drugs on levels of monoamine metabolites and prolactin in cerebrospinal fluid of psychiatric patients. In: Airaksinen H (ed) Proceedings of the sixth international congress of pharmacology, vol 3. Forssan Kirjapaino, Oy, pp 255–267

    Google Scholar 

  • Sedvall G, Farde L, Persson A, Wiesel F-A (1986a) Imaging of neurotransmitter receptors in the living human brain. Arch Gen Psychiatry 43: 995–1005

    PubMed  CAS  Google Scholar 

  • Sedvall G, Farde L, Stone-Elander S, Halldin C (1986b) Dopamine D1 receptor binding in the living human brain. In: Breese GR, Creese I (eds) Neurobiology of central Dl-dopamine receptors. Adv Exp Med Biol 204: 119–124

    Google Scholar 

  • Seeman P, Chau-Wong M, Tedesco J, Wong K (1975) Brain receptors for antipsychotic drugs and dopamine binding assay. In: Proc Natl Acad Sci USA 72: 4376–4380

    Article  CAS  Google Scholar 

  • Seeman P, Lee T, Chau-Wong M (1976) Antipsychotic drug doses and neuroleptic/dopa-mine receptors. Nature 261: 717–719

    Article  PubMed  CAS  Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1985) Longitudinal topography and interdigitation of corticostriatal protections in the rhesus monkey. J Neurosci 5: 776–794

    PubMed  CAS  Google Scholar 

  • Serra G, Argiolas A, Klimek V, Fadda F, Gessa GL (1979) Chronic treatment with anti-depressants prevents the inhibitory effect of small doses of apomorphine on dopamine synthesis and motor activity. Life Sci 25: 415–424

    Article  PubMed  CAS  Google Scholar 

  • Shore PA, Silver SL, Brodie BB (1955) Interaction of reserpine, serotonin and lysergic acid diethylamide in brain. Science 122: 284–285

    Article  PubMed  CAS  Google Scholar 

  • Siggins GR, Hoffer BJ, Ungerstedt U (1974) Electrophysiological evidence for involvement of cyclic adenosine monophosphate in dopamine responses of caudate neurons. Life Sci 15: 779–784

    Article  PubMed  CAS  Google Scholar 

  • Sjöqvist F (1971) A pharmacokinetic approach to the treatment of depression. Int Pharma-copsychiatry 6: 147–169

    Google Scholar 

  • Snyder SH, Greenberg D, Yamamura HI (1974) Antischizophrenic drugs and brain cho-linergic receptors: affinity for muscarinic sites predicts extrapyramidal effects. Arch Gen Psychiatry 31: 58–61

    PubMed  CAS  Google Scholar 

  • Sourkes TL (1973) On the origin of homovanillic acid (HVA) in the cerebrospinal fluid. J Neurol Transm 34: 153–157

    Article  CAS  Google Scholar 

  • Spiker DG, Edwards D, Hanin I, Neil J, Kupfer DJ (1980) Urinary MHPG and clinical response to amitriptyline in depressed patients. Am J Psychiatry 137: 1183–1187

    PubMed  CAS  Google Scholar 

  • Sternberg DE, Heninger GR, Roth RH (1983) Plasma homovanillic acid as an index of brain dopamine metabolism: enhancement with debrisoquin. Life Sci 32: 2447–2452

    Article  PubMed  CAS  Google Scholar 

  • Stone EA (1983) Problems with current catecholamine hypotheses of antidepressant agents: speculations leading to a new hypothesis. Behav Brain Sci 6: 535–577

    Article  Google Scholar 

  • Sugrue MF (1980) Changes in rat brain monoamine turnover following chronic antidepressant administration. Life Sci 26: 423–429

    Article  PubMed  CAS  Google Scholar 

  • Sugrue MF (1981) Current concepts on the mechanism of action of antidepressant drugs. Pharmacol Ther 13: 219–247

    Article  PubMed  CAS  Google Scholar 

  • Sugrue MF (1982) A study of sensitivity of rat brain alpha2-adrenoreceptors during chronic antidepressant treatments. Naunyn-Schmiedebergs Arch Pharmacol 320: 90–96

    Article  PubMed  CAS  Google Scholar 

  • Swahn C-G, Wiesel F-A (1976) Determination of conjugated monoamine metabolites in brain tissue. J Neural Transm 39: 281–290

    Article  PubMed  CAS  Google Scholar 

  • Träskman L, Åsberg M, Bertilsson L, Cronholm B, Mellström B, Neckers L, Sjöqvist F, Thorén P, Tybring G (1979) Plasma levels of chlorimipramine and its demethyl metabolite during treatment of depression. Clin Pharmacol Ther 26: 600–610

    PubMed  Google Scholar 

  • Träskman-Bendz L, Åsberg M, Bertilsson L (1981) Serotonin and noradrenaline uptake inhibitors in the treatment of depression — relationship to 5-HIAA in spinal fluid. Acta Psychiatr Scand [suppl 290] 63: 209–218

    Article  Google Scholar 

  • Ungerstedt U, Ljungberg T (1977) Behavioral patterns related to dopamine neurotransmission: effect of acute and chronic antipsychotic drugs. In: Costa E, Gessa GL (eds) Advances in biochemical psychopharmacology, vol 16. Raven, New York, pp 193–199

    Google Scholar 

  • Van Praag HM (1977) The significance of dopamine for the mode of action of neuroleptics and the pathogenesis of schizophrenia. Br J Psychiatry 130: 463–474

    Article  PubMed  Google Scholar 

  • Van Praag HM (1984) Studies in the mechanism of action of serotonin precursors in depression. Psychopharmacol Bull 20: 599–602

    PubMed  Google Scholar 

  • Van Praag HM, Korf J (1971) Endogenous depressions with and without disturbances in the 5-hydroxytryptamine metabolism: a biochemical classification? Psychopharmacol-ogy 19: 148–152

    Article  Google Scholar 

  • Vetulani J, Pilc A (1982) Postdecapitation convulsions in the rat measured with an animex mobility meter: relation to β-adrenoreceptors. Eur J Pharmacol 85: 269–275

    Article  PubMed  CAS  Google Scholar 

  • Vetulani J, Sulser F (1975) Action of various antidepressant treatments reduces reactivity of noradrenergic cyclic AMP-generating system in limbic forebrain. Nature 257: 495–496

    Article  PubMed  CAS  Google Scholar 

  • Wåhlinder J, Skott A, Nagy A, Roos BE (1976a) Potentiation of the antidepressant action of clomipramine by tryptophan. Arch Gen Psychiatry 33: 1384–1389

    Google Scholar 

  • Wåhlinder J, Skott A, Carlsson A, Roos B-E (1976b) Potentiation by metyrosine of thiori-dazine effects in chronic schizophrenics. Arch Gen Psychiatry 33: 501–505

    Google Scholar 

  • Wàgner A, Åberg-Wistedt A, Åsberg M, Bertilsson L, Mårtensson B, Montero D (1987) Effects of antidepressant treatments on platelet imipramine binding in major depressive disorders. Arch Gen Psychiatry 44: 870–877

    PubMed  Google Scholar 

  • Wagner HN, Burns HD, Dannals RF, Wong DS, Langström B, Duelfer T, Frost JJ, Ravert HT, Links JM, Rosenbloom SB, Lukas SE, Kramer AV, Kuhar MJ (1983) Imaging dopamine receptors in the human brain by positron tomography. Science 221: 1264–1266

    Article  PubMed  CAS  Google Scholar 

  • Weinberger DR, Bigelow LB, Kleinman JE, Klein ST, Rosenblatt JE, Wyatt RJ (1980) Cerebral ventricular enlargement in chronic schizophrenia: an association with poor response to treatment. Arch Gen Psychiatry 37: 11–13

    PubMed  CAS  Google Scholar 

  • Wheatley D (1972) Potentiation of amitriptyline by thyroid hormone. Arch Gen Psychiatry 26: 229–233

    PubMed  CAS  Google Scholar 

  • Wiesel F-A (1975) Massfragmentographic determination of acid dopamine metabolites in human cerebrospinal fluid. Neurosci Lett 1: 219–224

    Article  CAS  Google Scholar 

  • Wiesel F-A, Sedvall G (1975) Effect of antipsychotic drugs on homovanillic acid levels in striatum and olfactory tubercle of the rat. Eur J Pharmacol 30: 364–367

    Article  PubMed  CAS  Google Scholar 

  • Wiesel F-A, Fri C-G, Sedvall G (1973) Determination of homovanillic acid turnover in rat striatum using a monoamine oxidase inhibitor. Eur J Pharmacol 23: 104–106

    Article  PubMed  CAS  Google Scholar 

  • Wiesel F-A, Bjerkenstedt L, Skett P (1978) Effect of melperone, two of its metabolites and thiothixene on central monoamine metabolism and prolactin levels in rodents. Acta Pharmacol Toxicol 43: 126–136

    Google Scholar 

  • Willner P (1985) Antidepressant and serotonergic transmission: an integrative review. Psy-chopharmacology 85: 387–404

    CAS  Google Scholar 

  • Wilson JC, Garbutt JC, Lanier CF, Moylan J, Nelson W, Prange AJ (1983) Is there a tar-dive dysmentia? Schizophr Bull 9: 187–191

    PubMed  CAS  Google Scholar 

  • Wing JK (1966) Five year outcome in early schizophrenia. Roc Rodh Soc Med 59: 17–18

    CAS  Google Scholar 

  • Wode-Helgodt B (1977) Clinical and biochemical effects of chlorpromazine in psychotic patients. Doctoral thesis, Karolinska Institute, Stockholm

    Google Scholar 

  • Wode-Helgodt B, Fyrö B, Gullberg B, Sedvall G (1977) Effect of chlorpromazine treatment on monoamine metabolite levels in cerebrospinal fluid of psychotic patients. Acta Psychiatr Scand 56: 129–142

    Article  PubMed  CAS  Google Scholar 

  • Wode-Helgodt B, Borg S, Fyrö B, Sedvall G (1978) Clinical effects and drug concentrations in plasma and cerebrospinal fluid in psychotic patients treated with fixed doses of chlorpromazine. Acta Psychiatr Scand 58: 149–173

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wiesel, F.A., Träskman-Bendz, L. (1988). The Mechanisms of Action of Antipsychotics and Antidepressant Drugs. In: Ganten, D., Pfaff, D., Fuxe, K. (eds) Neuroendocrinology of Mood. Current Topics in Neuroendocrinology, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72738-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72738-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72740-5

  • Online ISBN: 978-3-642-72738-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics