Hydrophile-Lipophile-Balance and Interfacial Tensions in Water-Hydrocarbon-Surfactant Systems

  • D. Wielebinski
  • B. Föllner
  • K. Selcan
  • G. H. Findenegg
Conference paper


Three-component systems consisting of water, a hydrocarbon oil, and a nonionic polyoxyethylene surfactant of the form CnH2n+1 (OCH2CH2) mOH (denoted CnEm) exhibit a rich phase behaviour with liquid one-, two- and three-phase regions (and several liquid-crystal phases at higher surfactant concentrations). The capability of a surfactant to solubilize oil in water and water in oil, and to reduce the w/o interfacial tension σ depends on a balance of hydrophilic and hydrophobic interactions and on temperature (Shinoda and Friberg 1986). A well-balanced Cn Em surfactant is predominantly water-soluble at low temperatures and predominantly oil-soluble at higher temperatures. This “phase inversion” usually involves the formation of a surfactant-rich third liquid phase which is described as a microemulsion, or organized surfactant phase (Shinoda and Lindman 1987), although from a phenomenological point of view these systems are closely analogous to liquid three- or four-component systems with smaller amphiphilic molecules (which are not forming micellar solutions or liquid-crystal phases). The aqueous phase α, surfactant-rich phase β, and oil-rich phase y can coexist only over a limited temperature range between a lower critical end-point temperature T1 (at which α and β become identical in the presence of ϒ) and an upper critical end-point temperature Tu (at which β and ϒ become identical in the presence of α) (Kahlweit 1982; Kahlweit et al. 1983, 1984; Kahlweit and Strey 1985).


Interfacial Tension High Surfactant Concentration Limited Temperature Range Surfactant Phase Plait Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aveyard R, Binks BP, Lawless TA, Mead J (1985) JCS Faraday Trans I 81: 2155–2168Google Scholar
  2. Aveyard R, Lawless TA (1986) JCS Faraday Trans I 82: 2951–2963Google Scholar
  3. Fleming PD, Vinatieri JE, Glinsmann GR (1980) J Phys Phem 84: 1526–1531Google Scholar
  4. Heidel B, Findenegg GH (1984) J Phys Chem 88: 6575–6579CrossRefGoogle Scholar
  5. Heidel B, Findenegg GH (1987) J Chem Phys 86:Google Scholar
  6. Kahlweit M (1982) J Colloid Interface Sci 90: 197–202CrossRefGoogle Scholar
  7. Kahlweit M, Lessner E, Strey R (1983) J Phys Chem 87: 5032–5040CrossRefGoogle Scholar
  8. Kahlweit M, Lessner E, Strey R (1984) J Phys Chem 88: 1937–1944CrossRefGoogle Scholar
  9. Kahlweit M, Strey R (1985) Angew Chem 97: 655–669CrossRefGoogle Scholar
  10. Lang JC, Widom B (1975) Physica 81A: 190–213CrossRefGoogle Scholar
  11. Lang JC, Lim PK, Widom B (1976) J Phys Chem 80: 1719–1723CrossRefGoogle Scholar
  12. Pouchelon A, Meunier J, Langevin D, Cazabat AM (1980) J Phys (Paris) 41: L239–L242Google Scholar
  13. Radyshevskaya GS, Nikurashina NI, Mertslin RV (1962) Zh Obshch Khim 32: 673–676Google Scholar
  14. Selcan K, Findenegg GH (1987) J Colloid Interface Sci, to be submittedGoogle Scholar
  15. Shinoda K, Friberg S (1986) Emulsions and Solubilization, Wiley, New YorkGoogle Scholar
  16. Shinoda K, Lindman B (1987) Langmuir 3: 135–149CrossRefGoogle Scholar
  17. Widom B (1965) J Chem Phys 43: 3892–3897CrossRefGoogle Scholar
  18. Widom B (1967) J Chem Phys 46: 3324–3333CrossRefGoogle Scholar
  19. Widom B (1987) Langmuir 3: 12–17CrossRefGoogle Scholar
  20. Wielebinski D (1987) Doctoral dissertation. Ruhr-Universität BochumGoogle Scholar
  21. Wielebinski D, Findenegg GH (1984) J Phys Chem 88: 4397–4401CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • D. Wielebinski
    • 1
  • B. Föllner
    • 1
  • K. Selcan
    • 1
  • G. H. Findenegg
    • 1
  1. 1.Physikalische Chemie IIRuhr-Universität BochumBochum 1Germany

Personalised recommendations