Similarities and Differences in Ionic and Nonionic Hydrates

  • H. Kleeberg


A comparison of the hydration of ionic and nonionic substances may simplify our picture of complicated (i.e. biological or technical) systems and processes. We may learn to how far an extent the interactions involved may be described in a similar manner or whether more subtle approaches have to be used.


Frequency Shift Difference Spectrum Lone Electron Pair Hydrogen Fluoride Hydration Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews L (1984) Fourier Transform Infrared Spectra of HF Complexes in Solid Argon. J Phys Chem 88: 2940CrossRefGoogle Scholar
  2. Bachx P, Goldman S (1981) H20/D20 Solubility Isotope Effects. An estimate of the Extent of Nonclassical Rotational Behaviour of Water, when dissolved in Benzene or Carbontetrachloride. J Phys Chem 85: 2975–2979Google Scholar
  3. Badger RM (1940) The relation between the energy of a hydrogen bond and the frequencies of the OH-bands. J Chem Phys 8: 288–289CrossRefGoogle Scholar
  4. Badger RM, Bauer SH (1937) Spectr. Studies of the hydrogen bond. II. The shift of the OH vibrational frequency in the formation of the hydrogen bond. J Chem Phys 5: 839–851Google Scholar
  5. Behrens A, Luck WAP (1980) IR Matrix Isolation Studies of Self Association of water and OXim! - Proofs of Cyclic Structures in Matrices and the liquid State? J Mol Struct 60: 337–342CrossRefGoogle Scholar
  6. Bernal JD (1959) The Function of the Hydrogen Bond in Solids and Liquids. In: Hadzi D (eds) Hydrogen Bonding, Pergamon Press, London Beyer A, Karpfen A, Schuster P (1984) Energysurfaces of hydrogenbonded complexes in the vapor phase. In: Topics Curr. Chem. Vol. 120, p. 1–40Google Scholar
  7. Brakaspathy R, Singh S (1986) Effect of Molecular Interactions on the O-H Stretching Force Constants for Associated Water Species. Chem Phys Lett 131: 394–397CrossRefGoogle Scholar
  8. Couzi M, le Calvé J, van Huong P, Lascome J (1970) Etude Spectroscopique des Complexes Moleculaires entre les Fluorures D’Hydrogéne et de Deutérium et de Divers Accepteurs de Proton en Phase Gazeuse. J Mol Struct 5: 363–373CrossRefGoogle Scholar
  9. Davies MM (1940) An infra-red study of chloral hydrate and related compounds. Trans Faraday Soc 36: 333–344CrossRefGoogle Scholar
  10. Del Bene J, Pople JA (1970) Theory of Molecular Interactions I.Molecular Orbital studies of Water Polymers using a Minimal Slater- Type Basis. J Chem Phys 52: 4858CrossRefGoogle Scholar
  11. Del Bene J, Pople JA (1971) Theory of Molecular Interactions II. Molecular Orbital Studies of HF Polymers using a Minimal Slater- Type Basis, J Chem Phys 55: 2296Google Scholar
  12. Drago RS, O’Bryan N, Vogel GC (1970) A Frequency Shifts-Enthalpy Correlation for a given Donor with Various Hydrogen Bonding Acids. J Amer Chem Soc 92: 3924CrossRefGoogle Scholar
  13. Enderby JE (1981) Phys B1 37: 107Google Scholar
  14. Enderby JE, Neilson GW (1979) X-Ray and Neutron Scattering by Aqueous Soltuions of Electrolytes. In: Franks F (ed) Water a Comprehensive Treatise, Vol. 6. Plenum Press, New York, p1Google Scholar
  15. England L (1985) Frequenzen und Bandenintensitäten der OH und OD Grund- und Oberstreckschwingungen von Methanol und O-Deutero- methanol in verschiedenen Losungsmitteln, Diplomarbeit, Universität MarburgGoogle Scholar
  16. Falk M, Flakus HT, Boyd RJ (1986) An Ab Initio SCF Calculation of the Effect of Water-Anion and Water-Cation Interactions on the Vibrational Frequencies of Water. Spectrochim A 42: 175–180CrossRefGoogle Scholar
  17. Falk M, Knop O (1972) Water in stoichiometric Hydrates. In: Franks F (ed) Water a Comprehensiv Treatise. Vol. II, Plenum Press, New York p. 55–113Google Scholar
  18. Fox JJ, Martin AE (1940) Infra-red absorption of the hydroxyl group in relation to inter- and intramolecular hydrogen bonds. Trans Faraday Soc 36: 897–911CrossRefGoogle Scholar
  19. Frank HS, Wen WY (1957) Structural Aspects of Ion-Solvent Interaction in Aqueous Solutions: A suggested Picture of water Structure. Disc Faraday Soc 24: 133Google Scholar
  20. Glew DN, Rath NS (1971) H20, HDO, and CH3 OH Infrared Spectra and Correlation with Solvent Basicity ana Hydrogen Bonding. Can J Chem 49: 837CrossRefGoogle Scholar
  21. Greinacher E, Lüttke W, Mecke R (1955) Infrarotspektroskopische Untersuchungen an Wasser, gelöst in organischen Lösungsmitteln Z Elektrochem 59: 23–31Google Scholar
  22. Handbook of Chemistry and Physics (1976) 57th edition, CRC Press, ClevelandGoogle Scholar
  23. Heinje G (1986) Molekulardynamische und IR-spektroskopische Untersuchungen wässeriger Elektrolytlosungen, Thesis, University of MarburgGoogle Scholar
  24. Heinje G, Kammer T, Kleeberg H, Luck WAP, Infrared Spectroscopic Study of the Strengthening of H-bonds in Aqueous Salt Solutions, this volumeGoogle Scholar
  25. Heinzinger K, Pálinkás G, Interactions of Water in Ionic Hydrates, this volumeGoogle Scholar
  26. Hermansson K, Olovsson I (1984) Cation Influence on the Structure and Electron Density of Water in Some Men+,H20 Complexes. Theor Chim A, 64: 265–276CrossRefGoogle Scholar
  27. Hirano E, Kozima K (1966) The Intermolecular Hydrogen Bonding between Methanol and Triethylamine in various States. Bull Chem Soc Japan 39: 1216CrossRefGoogle Scholar
  28. Hussein MA, Millen DJ (1974) Hydrogen bonding in the gas phases. J Chem Soc Faraday II 70: 685–692Google Scholar
  29. Johnson GL, Andrews L (1982) Matrix Infrared Spectrum of the H3N- - - HF Hydrogen-Bonded Complex. J A Chem Soc 104: 3043–3047CrossRefGoogle Scholar
  30. Kebarle P (1977) Ion Thermochemistry and Solvation from Gas Phase Ion Equilibria. Ann Rev Phys Chem 28: 445CrossRefGoogle Scholar
  31. Kleeberg H (1981) H-bond state and Solubility in Aqueous Systems - A Working Hypothesis. In: Pullman B (ed) Intermolecular Forces Vol. 14, D. Reidel Publ Co, Dordrecht, p. 465–487Google Scholar
  32. Kleeberg H (1982) Infrarotspektroskopische Untersuchungen zur Hydratation in biologischen Systemen, Thesis, University of MarburgGoogle Scholar
  33. Kleeberg H (1986) IR-Spectroscopic Investigation of the Hydration of Tetrabutylammonium Bromide in Methylene Chloride. J Solution Chem 15: 169 - 176CrossRefGoogle Scholar
  34. Kleeberg H, Heinje G, Luck WAP (1986) Influence of Cations on the IR-Spectra of H2O in Organic solvents. J Phys Chem 90: 4427CrossRefGoogle Scholar
  35. Kleeberg H, Heinje G, Kammer T, Luck WAP (submitted) Cooperative Influence of Divalent and Trivalent Cations on H-bonds between Water and Polar Aprotic Solvents.Google Scholar
  36. Kleeberg H, Klein D, Luck WAP (1987) Quantitative Infrared Spectroscopic Investigations of Hydrogen-Bond Cooperativity. J Phys Chem 91: 3200–3203CrossRefGoogle Scholar
  37. Kleeberg H, Luck WAP, Zheng HY (1985) Comparison of Calorimetric and IR-Spectroscopic Data for Alcoholic Solutions, Fluid Phase Equilibria 20: 119–130CrossRefGoogle Scholar
  38. Koçak ö, Kleeberg H, Luck WAP, Infrared Spectroscopic Study on Anion Hydration in CH2C1(this volume)Google Scholar
  39. Koehler JEH, Saenger W, Ab initio calculations and many body analysis of the water tetramer (this volume)Google Scholar
  40. Kollman PA, Allen LC (1970a) Theory of the Hydrogen Bond: Ab initio Calculations on Hydrogen Fluoride Dimer and the Mixed Water-Hydro-gen Fluoride DimerGoogle Scholar
  41. Kollman PA, Allen LC (1970b) Hydrogen Bonded Dimers and Polymers Involving Hydrogen Fluoride, Water and Ammonia. J Amer Chem Soc 92: 753CrossRefGoogle Scholar
  42. Kurnig IJ, Szczesniak MM, Scheiner S (1986) Ab Initio Study of Structure and Cooperativity in H3N-HF-HF and H3P-HF-HF, J Chem Phys 90: 4253CrossRefGoogle Scholar
  43. Landolt-Bornstein, Neue Serie, (1976) Zahlenwerte und Funktionen,Vol. IV 2, Springer-Verlag, BerlinGoogle Scholar
  44. Luck WAP (1965) Die Temperaturabhangigkeit der Wasserbanden bis zum kritischen Punkt. Ber Bunsenges Phys Chem 69: 626–637Google Scholar
  45. Luck WAP (1967) Spectroscopic Studies Concerning the Structure and the Thermodynamic Behaviour of H20, CH3OH and C9HROH. Discuss Faraday Soc 43: 115–127CrossRefGoogle Scholar
  46. Luck WAP, Ditter W (1970) Approximate Methods for Determining the Structure of H20 and HOD Using Near Infrared Spectroscopy. J Phys Chem 74: 3687CrossRefGoogle Scholar
  47. Luck WAP (1978) Zur Struktur des Wassers und wässriger Systeme. Progr. Colloid and Polymer Sci 65: 6–28CrossRefGoogle Scholar
  48. Luck WAP (1979) A Model of Simple Liquids. Angew Chem Int Ed Engl 18: 350–363CrossRefGoogle Scholar
  49. Luck WAP (1980) Modellbetrachtungen von Fllissigkeiten mit Wasserstoff-brücken. Angew. Chem. Int. Ed. Engl. 19: 28–41CrossRefGoogle Scholar
  50. Luck WAP (1981a) Studies of Intermolecular Forces by Vibrational Spectroscopy. In: Pullman B (ed) Intermolecular Forces, D Reidel Publ Co, Dordrecht, p. 199–215Google Scholar
  51. Luck WAP (1981b) Struktur und Loseeigenschaften des Wassers. In: Essig V et al (eds.) Flüssige Arnzeiformen- und Arzneimittelsicher- heit.Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, p. 17Google Scholar
  52. Luck WAP, Mann B, Neikes T, Schmidt E (1974) Matrix-Isolationsspektro- skopie an H20 und D20 im Infrarot- und fernen Infrarotgebiet. Ber Bunsenges Phys Chem 78: 1236–1241Google Scholar
  53. Luck WAP, Schrems O (1980) Infrared Matrix Isolation Studies of Self-Association of Methanol and Ethanol: Proof of Cyclic Dimers J Mol Struct 60: 333–336Google Scholar
  54. Millen DJ, Mines GW (1974) Hydrogen bonding in the gas phase. J Chem Soc Faraday II, 70: 693–699Google Scholar
  55. Purcell KF, Drago RS (1967) Theoretical Aspects of the Linear Enthalpy Wave number Shift Relation for Hydrogen Bonded Phenols. J Amer Chem Soc 89: 2874–2879CrossRefGoogle Scholar
  56. Rao CNR, Dwivedi PC, Ratajczak H, Orvilie-Thomas WJ (1975) Relation between O-H Stretching Frequency and Hydrogen Bond energy: Reexamination of the Badger-Bauer Rule. J Chem Soc Faraday Trans II 71: 955–966CrossRefGoogle Scholar
  57. Ratajczak H, Orville-Thoas WJ, Rao CNR (1976) Charge Transfer Theory of Hydrogen Bonds: Relation between Vibrational Spectra and Energy of Hydrogen Bonds. Chem. Phys. 17: 197–216CrossRefGoogle Scholar
  58. Rospenk M. Szemik A, Huyskens P (1985) Dipolar Study of Derivatives of 4-carbonyl-and 3-carbonyl-pyridine and their complexes with phenol. J Mol Struct 129: 333–344CrossRefGoogle Scholar
  59. Schiöberg D, Luck WAP (1979) Infrared Studies of Water in Complexes. J Chem Soc Faraday Trans I 75: 762–773Google Scholar
  60. Schuster P (1981) Zwischenmolekulare Kräfte - Ein Besipiel fur das Zusammenwirken von Theorie und Experiment. Angew. Chem. 93: 532–553CrossRefGoogle Scholar
  61. Sutherland GBBM (1940) The investigation of hydrogen bonds by means of infrared absorption spectra. Trans. Faraday Soc 36: 889–897CrossRefGoogle Scholar
  62. Symons MCR, Fletcher NJ, Thompson V (1979) Spectroscopic Detection of Free “Lone-Pair” Groups or Terminal Methanol Molecules in Methanol Solutions. Chem Phys Letters 60: 323–325CrossRefGoogle Scholar
  63. Szczesniak MM, Scheiner S (1984) Theoretical Study of H2O-HC1: Comparison with Experiment. J Chem Phys 81: 5024CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • H. Kleeberg
    • 1
  1. 1.Department of Physical ChemistryUniversity of MarburgMarburgGermany

Personalised recommendations