Skip to main content

Abstract

In his doctoral thesis Paul Langerhans [55] demonstrated for the first time that the pancreas contains elements other than the exocrine acini. During the subsequent years there was only slow progress in the understanding of the pancreatic islets. The first international symposium on the pancreatic islets was held in Uppsala 1963, and 6 years later the centenary of Paul Langerhans’ discovery was celebrated in Umeå. On the latter occasion it was stated in the opening address [17] that more secrets had been revealed about the pancreatic islets since the first symposium than during the whole of the rest of the century since the discovery of the islets.

The work reported from the author’s laboratory was supported by the Swedish Medical Research Council (12X–562), the Swedish Diabetes Association, and the Nordic Insulin Foundation. The establishment of the patch clamp technique was made possible by donations from the Wallenberg Foundation and the Swedish Council for Planning and Corrdination of Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson T, Berggren P-O, Gylfe E, Hellman B (1982) Amounts and distribution of intracellular magnesium and calcium in pancreatic B-cells. Acta Physiol Scand 114: 235–241

    Article  PubMed  CAS  Google Scholar 

  2. Ashcroft SJH, Weerasinghe LCC, Randle PJ (1973) Interrelationship of islet metabolism, adenosine triphosphate content and insulin release. Biochem J 132: 223–231

    PubMed  CAS  Google Scholar 

  3. Ashcroft FM, Harrison DE, Ashcroft SJH (1984) Glucose induces closure of single potassium channels in isolated rat pancreatic B-cells. Nature (London) 312: 446–448

    Article  CAS  Google Scholar 

  4. Atwater I, Goncalves A, Herchuelz A, Lebrun P, Malaisse WJ, Rojas E, Scott A (1984) Cooling dissociates glucose-induced insulin release from electrical activity and cation fluxes in rodent pancreatic islets. J Physiol (Lond) 348: 615–627

    CAS  Google Scholar 

  5. Bergsten P, Hellman B (1984) Glucose inhibits insulin release when not promoting the entry of Ca2+ into the B-cells. Biochem Biophys Res Commun 125: 875–881

    Article  PubMed  CAS  Google Scholar 

  6. Bergsten P, Rorsman F, Hellman B (1986) Modifications of the pancreatic B-cell function after lowering their potassium content. Acta Physiol Scand 128: 619–628

    Article  PubMed  CAS  Google Scholar 

  7. Bhatena SJ, Awoke S, Voyles NR, Wilkins SD, Recant L, Oie HK, Gazdar AF (1984) Insulin, glucagon and somatostatin secretion by cultured rat islet cell tumor and its clones. Proc Soc Exp Biol Med 175:35–38

    Google Scholar 

  8. Borg LAH, Andersson A (1981) Long-term effects of glibenclamide on the insulin production, oxidative metabolism and quantitative ultrastructure of mouse pancreatic islets maintained in tissue culture at different glucose concentrations. Acta Diabetol Lat 18: 65–83

    Article  CAS  Google Scholar 

  9. Charles S, Ketelslegers JM, Buysschaert M, Lambert AE (1981) Hyperglycemic effect of nifedipine. Br Med J 283:19–20

    Article  CAS  Google Scholar 

  10. Charles S, Tamagawa T, Henquin JC (1982) A single mechanism for the stimulation of insulin release and 86Rb efflux from rat islets by cationic amino acids. Biochem J 208: 301–308

    PubMed  CAS  Google Scholar 

  11. Colca JR, McDonald JM, Kotagal N, Patke C, Fink J, Greider MH Lacy PE, McDaniel ML (1982) Active calcium uptake by islet-cell endoplasmic reticulum. J Biol Chem 257: 7223–7228

    PubMed  CAS  Google Scholar 

  12. Colca JR, Kotagal N, Lacy PE, McDaniel ML (1983) Modulation of active Ca2+ uptake by the islet-cell endoplasmic reticulum. Biochem J 212:113–121

    PubMed  CAS  Google Scholar 

  13. Cook DL, Hales CN (1984) Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature (London) 311: 271–273

    Article  CAS  Google Scholar 

  14. Cook DL, Ikeuchi M, Fujimoto WY (1984) Lowering of pH inhibits Ca2+-activated K+ channels in pancreatic B-cells. Nature (London) 311: 269–271

    Article  CAS  Google Scholar 

  15. Devis G, Somers G, Malaisse WJ (1975) Stimulation of insulin release by calcium. Biochem Biophys Res Commun 67: 525–529

    Article  PubMed  CAS  Google Scholar 

  16. Efendić S, Enzmann F, Nylén A, Uvnäs-Wallensten K, Luft R (1979) Effect of glucose/sulfonylurea interaction on release of insulin, glucagon and somatostatin from isolated perfused rat pancreas. Proc Natl Acad Sci USA 76: 5901–5904

    Article  PubMed  Google Scholar 

  17. Falkmer S, Hellman B, Täljedal IB (1970) Opening address. In: Falkmer S, Hellman B and Täljedal IB (eds). The structure and metabolism of the pancreatic islets. A centennial of Paul Langerhans’ discovery. Pergamon, Oxford, p 1

    Google Scholar 

  18. Findlay I, Dunne MJ (1985) Voltage-activated Ca2+ currents in insulin-secreting cells. FEBS Lett 189: 281–285

    Article  PubMed  CAS  Google Scholar 

  19. Findlay I, Dunne MJ, Petersen OH (1985) High-conductance K+ channel in pancreatic islet cells can be activated and inactivated by internal calcium. J Membr Biol 83: 169–175

    Article  PubMed  CAS  Google Scholar 

  20. Findlay I, Dunne MJ, Petersen OH (1985) ATP-sensitive inward rectifier and voltage- and calcium-activated K+ channels in cultured pancreatic islet cells. J Membr Biol 88:165–172

    Article  PubMed  CAS  Google Scholar 

  21. Findlay I, Dunne MJ, Ullrich S, Wollheim CB, Petersen OH (1985) Quinine inhibits Ca2+-independent K+ channels whereas tetraethylammonium inhibits Ca2+-activated K+ channels in insulin-secreting cells. FEBS Lett 185: 4–8

    Article  PubMed  CAS  Google Scholar 

  22. Formby B, Capito K, Egeberg J, Hedeskov CJ (1976) Ca-activated ATPase activity in subcellular fractions of mouse pancreatic islets. Am J Physiol 230: 441–448

    PubMed  CAS  Google Scholar 

  23. Ganda OP, Srikanta S, Brink SJ, Morris MA, Gleason RE, Soeldner SJ, Eisenbarth GS (1984) Differential sensitivity to ß-cell secretagogues in “early” type 1 diabetes mellitus. Diabetes 33: 516–521

    Article  PubMed  CAS  Google Scholar 

  24. Gedik O, Zileli MS (1977) Effects of hypocalcemia and theophylline on glucose tolerance and insulin release in human beings. Diabetes 26: 813–819

    PubMed  CAS  Google Scholar 

  25. Gepts W (1957) Contributions à l’étude morphologique des ilots de Langerhans au cours du diabète. Thesis. Editions Acta Med Belg, Bruxelles, pp 1–108

    Google Scholar 

  26. Grodsky GM, Bennett LL (1966) Cation requirements for insulin secretion in the isolated perfused pancreas. Diabetes 15: 910–912

    PubMed  CAS  Google Scholar 

  27. Grunfeld C, Chappell DA (1983) Hypokalemia and diabetes mellitus. Am J Med 75: 553–554

    Article  PubMed  CAS  Google Scholar 

  28. Giugliano D, Torella R, Cacciapuoti F, Gentile S, Verza M, Varriechio M (1980) Impairment of insulin secretion in man by nifedipine. Eur J Clin Pharmacol 18: 395–398

    Article  PubMed  CAS  Google Scholar 

  29. Gylfe E, Hellman B (1986) Glucose-stimulated sequestration of Ca2+ in clonal insulin-releasing cells. Biochem J 233: 865–870

    PubMed  CAS  Google Scholar 

  30. Gylfe E, Hellman B, Sehlin J, Täljedal IB (1984) Interaction of sulfonylurea with the pancreatic ß-cell. Experientia 40:1126–1134

    Article  PubMed  CAS  Google Scholar 

  31. Hellman B (1975) The significance of calcium for glucose stimulation of insulin release. Endocrinology 97: 392–398

    Article  PubMed  CAS  Google Scholar 

  32. Hellman B (1976) Stimulation of insulin release after raising extracellular calcium. FEBS Lett 63:125–128

    Article  PubMed  CAS  Google Scholar 

  33. Hellman B (1982) The mechanism of sulfonylurea stimulation of insulin release. Acta Biol Med Germ 41:1211–1219

    PubMed  CAS  Google Scholar 

  34. Hellman B (1985) ß-cell cytoplasmic Ca2+ balance as a determinant for glucose-stimulated insulin release. Diabetologia 28: 494–501

    Article  PubMed  CAS  Google Scholar 

  35. Hellman B (1986) Calcium transport in pancreatic ß-cells: implications for glucose regulation of insulin release. Diabetes Metab Rev 2: 215–241

    Article  PubMed  CAS  Google Scholar 

  36. Hellman B, Gylfe E (1985) Glucose regulation of insulin release involves intracellular sequestration of calcium. In: Rubin RP, Weiss GB and Putney Jr JW (eds) Calcium in biological systems. Plenum, New York, pp 93–99

    Chapter  Google Scholar 

  37. Hellman B, Gylfe E (1986) Calcium and the control of insulin secretion. In: Cheung WY (ed) Calcium and cell function, vol 6. Academic, New York, pp 253–326

    Google Scholar 

  38. Hellman B, Gylfe E (1986) Mobilization of different intracellular calcium pools after activation of muscarinic receptors in pancreatic beta-cells. Pharmacology 32: 257–267

    Article  PubMed  CAS  Google Scholar 

  39. Hellman B, Idahl L-Å, Danielsson Å (1969) Adenosine trisphosphate levels in mammalian pancreatic ß-cells after stimulation with glucose and hypoglycemic sulfonylureas. Diabetes 18: 509–516

    PubMed  CAS  Google Scholar 

  40. Hellman B Andersson T, Berggren P-O, Flatt P, Gylfe E, Kohnert K-D (1979) The role of calcium in insulin secretion. In: Dumont J, Nunez J (eds) Hormone and cell regulation, vol 3. Elsevier, Amsterdam, pp 69–96

    Google Scholar 

  41. Hellman B, Andersson T, Berggren P-O, Rorsman P (1980) Calcium and pancreatic ß-cell function. II Modification of 45Ca fluxes by Na+ removal. Biochem Med 24:143–152

    Article  PubMed  CAS  Google Scholar 

  42. Hellman B, Honkanen T, Gylfe E (1982) Glucose inhibits insulin release induced by Na+ mobilization of intracellular calcium. FEBS Lett 148: 289–292

    Article  PubMed  CAS  Google Scholar 

  43. Hellman B, Hällgren R, Abrahamsson H, Bergsten P, Berne C, Gylfe E, Rorsman P, Wide L (1985) The dual action of glucose on the cytosolic Ca2+ activity in pancreatic ß-cells. Demonstration of an inhibitory effect of glucose on insulin release in the mouse and man. Biomed Biochim Acta 44: 63–70

    PubMed  CAS  Google Scholar 

  44. Hellman B, Arkhammar P, Berggren P-O, Bergsten P, Gylfe E, Nilsson T, Rorsman F, Rorsman P, Trube G, Wesslén N (1986) Evidence for bidirectional glucose control of the cytoplasmic calcium regulating insulin release. In: Serrano-Rios M, Lefèbvre PJ (eds) Diabetes 1985. Elsevier, Amsterdam, pp 177–180

    Google Scholar 

  45. Hellman B, Gylfe E, Wesslén N (1986) Inositol 1,4,5-trisphosphate mobilizes glucose-incorporated calcium from pancreatic islets. Biochem Int 13: 383–389

    PubMed  CAS  Google Scholar 

  46. Hellman B, Gylfe E, Bergsten P (1987) Mobilization of different pools of glucose-incorporated calcium in pancreatic ß-cells after muscarinic receptor activation. In: Atwater I, Rojas E, Soria B (eds), Biophysics of the pancreatic ß-cell. Plenum, New York, pp 325–341

    Google Scholar 

  47. Henriksson C, Claes G, Gylfe E, Hellman B, Zettergren L (1978) Collagenase isolation and 45Ca efflux studies of human islets of Langerhans. Eur Surg Res 10: 343–351

    Article  PubMed  CAS  Google Scholar 

  48. Herchuelz A, Malaisse WJ (1980) Regulation of calcium fluxes in rat pancreatic islets: dissimilar effects of glucose and of sodium ion accumulation. J Physiol (Lond) 302: 263–280

    CAS  Google Scholar 

  49. Herchuelz A, Malaisse WJ (1981) Calcium movements and insulin release in pancreatic islet cells. Diabète Métab 7: 283–288

    PubMed  CAS  Google Scholar 

  50. Hutton JC, Peskavaria M (1982) Proton-translocating Mg2+-dependent ATPase activity in insulin-secretory granules. Biochem J 204:161–170

    PubMed  CAS  Google Scholar 

  51. Hutton JC, Penn EJ, Peskavaria M (1983) Low-molecular weight constituents of isolated insulin-secretory granules. Bivalent cations, adenine nucleotides and inorganic phosphate. Biochem J 210: 297–305

    PubMed  CAS  Google Scholar 

  52. Jones PM, Stuchfield J, Howell SL (1985) Effects of Ca2+ and a phorbol ester on insulin secretion from islets of Langerhans permeabilized by high voltage discharge. FEBS Lett 191: 102–106

    Article  PubMed  CAS  Google Scholar 

  53. Kohnert KD, Hahn HJ, Gylfe E, Borg H, Hellman B (1979) Calcium and pancreatic ß-cell function. 6. Glucose and intracellular 45Ca distribution. Mol Cell Endocrinol 16: 205–220

    Article  PubMed  CAS  Google Scholar 

  54. Krieger-Brauer H, Gratzl M (1982) Uptake of Ca2+ by isolated secretory vesicles from adrenal medulla. Biochim Biophys Acta 691: 61–70

    Article  PubMed  CAS  Google Scholar 

  55. Langerhans P (1869) Beiträge zur mikroskopischen Anatomie der Bauchspeicheldrüse. Thesis, Lange, Berlin, pp 1–32

    Google Scholar 

  56. Leahy JL, Weir GC (1985) Unresponsiveness to glucose in a streptozocin model of diabetes. Inappropriate insulin and glucagon responses to a reduction of glucose concentration. Diabetes 34:653–659

    Article  PubMed  CAS  Google Scholar 

  57. Leahy JL, Cooper HE, Deal DA, Weir GC (1986) Chronic hyperglycemia is associated with impaired glucose influence on insulin secretion. A study in normal rats using chronic in vivo glucose infusions. J Clin Invest 77: 908–915

    Article  PubMed  CAS  Google Scholar 

  58. MacDonald MJ (1984) The use of calcium uptake by small amounts of mitochondria from pancreatic islets to study mitochondrial respirations. The effects of diazoxide and sodium. Biochem Int 8: 771–778

    PubMed  CAS  Google Scholar 

  59. Marty A, Neher E (1982) Ionic channels in cultured rat pancreatic islet cells. J Physiol (Lond) 326: 36–37P

    Google Scholar 

  60. Matthews EK (1979) Calcium translocation and control mechanisms for endocrine secretion. Symp Soc Exp Biol 33: 225–249

    PubMed  CAS  Google Scholar 

  61. Matteson DR, Armstrong CM (1986) Properties of two types of calcium channels in clonal pituitary cells. J Gen Physiol 87:161–182

    Article  PubMed  CAS  Google Scholar 

  62. Metz SA, Halter JB, Robertson RP (1979) Paradoxical inhibition of insulin secretion by glucose in human diabetes mellitus. J Clin Endocrinol Metab 48: 827–835

    Article  PubMed  CAS  Google Scholar 

  63. Milner RDG, Hales CN (1967) The role of calcium and magnesium in insulin secretion from rabbit panreas studied in vitro. Diabetologia 3: 47–49

    Article  PubMed  CAS  Google Scholar 

  64. Pershadsingh HA, McDaniel ML, Landt M, Bry CG, Lacy PE, McDonald JM (1980) Ca2+-activated ATPase and ATP-dependent calmodulin-stimulated Ca2+transport in islet cell plasma membrane. Nature (London) 288: 492–495

    Article  CAS  Google Scholar 

  65. Prentki M, Wollheim CB (1984) Cytosolic free Ca2+in insulin secreting cells and its regulation by isolated organelles. Experientia 40:1052–1060

    Article  PubMed  CAS  Google Scholar 

  66. Prentki M, Janjic D, Wollheim CB (1983) The regulation of extramitochondrial steady state free Ca2+ concentration by rat insulinoma mitochondria. J Biol Chem 258: 7597–7602

    PubMed  CAS  Google Scholar 

  67. Robertson RP, Brunzell JD, Hazzard WR, Lerner RL, Porte D Jr (1972) Paradoxical hypoinsulinaemia: an alpha-adrenergic-mediated response to glucose. Lancet 2: 787–789

    Article  PubMed  CAS  Google Scholar 

  68. Rorsman P, Abrahamsson H (1985) Cyclic AMP potentiates glucose-induced insulin release from mouse pancreatic islets without increasing cytosolic free Ca2+. Acta Physiol Scand 125: 639–647

    Article  PubMed  CAS  Google Scholar 

  69. Rorsman P, Hellman B (1987) Voltage-activated currents in guinea-pig pancreatic α2-cells. Evidence for Ca2+-dependent action potentials. J Gen Physiol (in press)

    Google Scholar 

  70. Rorsman P, Trube G (1985) Glucose-dependent K+-channels in panreatie ß-cells are regulated by intracellular ATP. Pflugers Arch 405: 305–309

    Article  PubMed  CAS  Google Scholar 

  71. Rorsman P, Trube G (1986) Calcium and delayed potassium currents in mouse pancreatic ß-cells under voltage-clamp conditions. J Physiol (Lond) 374: 531:-550

    CAS  Google Scholar 

  72. Rorsman P, Berggren P-O, Gylfe E, Hellman B (1983) Reduction of the cytosolic calcium activity in clonal insulin-releasing cells exposed to glucose. Biosci Rep 3: 939–946

    Article  PubMed  CAS  Google Scholar 

  73. Rorsman P, Abrahamsson H, Gylfe E, Hellman B (1984) Dual effects of glucose on the cytosolic Ca2+ activity of mouse pancreatic B-cells. FEBS Lett 170:196–200

    Article  PubMed  CAS  Google Scholar 

  74. Rorsman P, Arkhammar P, Berggren P-O (1986) Voltage-activated Na+ currents and their suppression by phorbol ester in the clonal insulin-producing cell line RINm5F. Am J Physiol 251, C912-C919

    PubMed  CAS  Google Scholar 

  75. Röjdmark S, Andersson DEH (1984) Influence of verapamil on glucose tolerance. Acta Med Scand [Suppl] 681: 37–42

    Google Scholar 

  76. Satin LS, Cook DL (1985) Voltage-gated Ca2+ current in pancreatic ß-cells. Pflugers Arch 404: 385–387

    Article  PubMed  CAS  Google Scholar 

  77. Seltzer HS, Crout JR (1968) Insulin secretory blockade by benzothiadiazines and catecholamines: reversal by sulfonylureas. Ann NY Acad Sci 150: 309–321

    Article  PubMed  CAS  Google Scholar 

  78. Sturgess NC, Ashford MLJ, Cook DL, Hales CN (1985) The sulphonylurea receptor may be an ATP-sensitive potassium channel. Lancet 8453: 474–475

    Article  Google Scholar 

  79. Tamagawa T, Niki H, Niki A (1985) Insulin release independent of a rise in cytosolic free Ca2+by forskolin and phorbol ester. FEBS Lett 183: 430–432

    Article  PubMed  CAS  Google Scholar 

  80. Trube G, Ohno-Shosaku T, Rorsman P, Zünkler BJ (1986) Hypoglycemic sulfonylureas inhibit ATP-dependent K channels in pancreatic B-cells. Pflugers Arch 406: R63

    Google Scholar 

  81. Trube G, Rorsman P, Ohno-Shosaku T (1986) Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic ß-cells. Pflugers Arch 407:493–499

    Article  PubMed  CAS  Google Scholar 

  82. Wesslén N, Hellman B (1986) The influx of Ca2+ into pancreatic ß-cells and its regulation by glucose. Biomed Res 7: 339–344

    Google Scholar 

  83. Wollheim CB, Pozzan T (1984) Correlation between cytosolic free Ca2+ and insulin release in an insulin-secreting cell line. J Biol Chem 259: 2262–2267

    PubMed  CAS  Google Scholar 

  84. Wollheim CB, Sharp GWG (1981) Regulation of insulin release by calcium. Physiol Rev 61: 914–973

    PubMed  CAS  Google Scholar 

  85. Wollheim CB, Ullrich S, Pozzan T (1984) Glyceraldehyde but not cyclic AMP-stimulated insulin release is preceded by a rise in cytosolic free Ca2+. FEBS Lett 177:17–22

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hellman, B. (1988). Calcium Transport and Deficient Insulin Release. In: Lefèbvre, P.J., Pipeleers, D.G. (eds) The Pathology of the Endocrine Pancreas in Diabetes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72691-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72691-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72693-4

  • Online ISBN: 978-3-642-72691-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics