Photochemical Behaviour of Luminescent Dyes in Sol-Gel and Boric Acid Glasses

  • R. Reisfeld
  • M. Eyal
  • R. Gvishi
  • C. K. Jørgensen
Conference paper


Fluorescence of organic colorants is generally enhanced by high viscosity of the surrounding medium, having much fewer energetic collisions with the excited state, and perhaps also preventing large distortions along unsymmetrical vibrational modes. However, this is not simply determined by the macroscopic viscosity (Lewis and Calvin 1939) since cool glycerol is much more effective than a lubricating oil at the same low temperature. We are here studying fluorescein, belonging to the category of xanthene dyes (the heterocyclic xanthene is two benzene rings connected with two bridges in ortho-position, one being an oxygen atom and the other CH2) like the various substituted eosine and rhodamine modifications. In many cases, their quantum yield η is above 0.9, and corresponding to their very strong absorption bands in the visible, the life-time τ of fluorescein is only 4 nanoseconds in water and alcohols (Martin 1975).


Triplet State Excited Singlet State Delayed Fluorescence Photochemical Behaviour Beta Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avnir D, Levy D, Reisfeld R (1984) J.Phys. Chem. 88: 5956–5959CrossRefGoogle Scholar
  2. Avnir D, Kaufman V R, Reisfeld R (1985) J.Non-Cryst. Solids 74: 395–406CrossRefGoogle Scholar
  3. Carmichael T, Hug G L (1986) Triplet-triplet absorption spectra of organic molecules in condensed phases. J.Phys.& Chem. Ref. Data (Nat. Bur. Stand., Washington DC) 15: 1.Google Scholar
  4. Jabloński A (1935) Z.Physik 94: 38–46CrossRefGoogle Scholar
  5. Jørgensen C K (1962) J.Inorg. Nucl. Chem. 24: 1587–1594CrossRefGoogle Scholar
  6. Kramer M A, Tompkin W R, Boyd R W (1986) Phys. Rev. A 34: 2026–2031CrossRefGoogle Scholar
  7. Leonhardt H, Gordon L, Livingston R (1971) J.Phys. Chem. 75: 245–249CrossRefGoogle Scholar
  8. Levy D, Reisfeld R, Avnir D (1984) Chem. Phys. Lett. 109: 593–597CrossRefGoogle Scholar
  9. Lewis G N, Calvin M (1939) Chem. Rev. 25: 273–328CrossRefGoogle Scholar
  10. Lewis G N, Lipkin D, Magel T T (1941) J.Am. Chem. Soc. 63: 3005–3018CrossRefGoogle Scholar
  11. Mack H, Reisfeld R, Avnir D (1983) Chem. Phys. Lett. 99: 238–239CrossRefGoogle Scholar
  12. Martin M M, Lindqvist L (1973) Chem. Phys. Lett. 22: 309–312CrossRefGoogle Scholar
  13. Martin MM (1975) Chem. Phys. Lett. 35: 105–111CrossRefGoogle Scholar
  14. Neuroth M, Haspel R (1986) Glasses for luminescent solar concentrators. Proc.SPIE-86, Opt. Mater. Technol. Energy Effic. Solar Energy Conversion 653: 88–92Google Scholar
  15. Reisfeld R, Jorgensen C K (1982) Structure and Bonding 49: 1–36CrossRefGoogle Scholar
  16. Reisfeld R (1983) Chem. Phys. Lett. 95: 93–95Google Scholar
  17. Reisfeld R, Manor N, Avnir D (1983) Solar Energy Materials 8: 399–409CrossRefGoogle Scholar
  18. Reisfeld R (1984) J.Electrochem. Soc. 131: 1360–1364CrossRefGoogle Scholar
  19. Reisfeld R (1985) Chem. Phys. Lett. 114: 306–308CrossRefGoogle Scholar
  20. Reisfeld R, Eyal M, Gvishi R (1987) Chem. Phys. Lett., submittedGoogle Scholar
  21. Weber G, Teale F W J (1958) Trans. Faraday Soc. 54: 640–648CrossRefGoogle Scholar
  22. Zanker V, Peter W (1958) Chem. Ber. 91; 572–580CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1987

Authors and Affiliations

  • R. Reisfeld
    • 1
  • M. Eyal
    • 1
  • R. Gvishi
    • 1
  • C. K. Jørgensen
    • 2
  1. 1.Department of Inorganic ChemistryHebrew UniversityJerusalemIsrael
  2. 2.Section de ChimieUniversité de GenèveGeneva 4Switzerland

Personalised recommendations