Advertisement

Neurological Oscillations: Formulation of Mathematical Control Models and Applications to Clinical Syndromes

  • L. Stark
Part of the Springer Series in Synergetics book series (SSSYN, volume 36)

Abstract

Oscillations are a closed mystery to the non-mathematical biologist. In this paper, we review the application of control theory to a number of different oscillatory mechanisms in neurology.

Keywords

Bifurcation Diagram Main Sequence Saccadic Amplitude Space Constancy Corollary Discharge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aschoff, J.C, and Cohen, B., “Changes in Saccadic Eye Movements Produced by Cerebellar Cortical Lesions.”, Experimental Neurology, 32:123–133 (1971)CrossRefGoogle Scholar
  2. Aschoff, J.C, Becker, W., and Rettlebach, R., “Voluntary Nystagmus in Five Generations”, J. Neurosurg. Psychiatr., 39:300 (1976)Google Scholar
  3. Bahill, T. A. and Stark, L., “Trajectories of Saccadic Eye Movements”, Sci. Am. 240 (1979)Google Scholar
  4. Bahill, T. A., Clark, M., and Stark, L., “Dynamic Overshoot in Saccadic Eye Movements is Caused by Neurological Control Signal Reversals”, Exp. Neurol. 48: 107, (1975a)CrossRefGoogle Scholar
  5. Bahill, T. A., Clark, M., and Stark, L., “The Main Sequence, a Tool for Studying Human Eye Movements”, Math. Biosci. 24: 191 (1975b)CrossRefGoogle Scholar
  6. Bellman, R., Dynamic Programming, Princeton University Press, Princeton (1957)zbMATHGoogle Scholar
  7. Clark, M. and Stark, L., “Control of Human Eye Movements: I. Modelling of Extraocular Plant”, Math. Biosci., 20: 191–211 (1974a)zbMATHCrossRefGoogle Scholar
  8. Clark, M. and Stark, L., “Control of Human Eye Movements: II. A Model for the Extraocular Plant”, Math. Biosci. 20: 213, (1974b)zbMATHCrossRefGoogle Scholar
  9. Clark, M. and Stark, L., “Control of Human Eye Movements. III. Dynamic Characteristics of the eye tracking mechanism.” Math. Biosci., 20: 239 (1974c)zbMATHCrossRefGoogle Scholar
  10. Clark, M. and Stark, L., “Time optimal behavior of human saccadic eye movement,” IEEE Trans. on Automatic Control, AC-20: 345–348 (1975)CrossRefGoogle Scholar
  11. Clark, M., Jury, E. I. and Krishnan, V.V., “Glissades-eye movements generated by mismatched components of the saccadic motoneuronal control signal”. Math. Biosci. 26: 303–318 (1975a)CrossRefGoogle Scholar
  12. Clark, M., Jury, E. I. and Krishnan, V.V., and Stark, L., “Computer Simulation of Biological Models using the Inners Approach”, Comp. Prog. Biomed. 5: 263–282 (1975b)Google Scholar
  13. Clark, M., Krishnan, V. V. and Stark, L., “Inners and biocontrol models,” Bull. Math. Biol., 32: 161 (1975c)Google Scholar
  14. Cook, G. and Stark, L., “Derivation of a model for the human eye-positioning mechanism,” Bull. Math. Biophys., 29: 153 (1967)CrossRefGoogle Scholar
  15. Coren, S. and Komada, M. K., “Eye movement control in voluntary nystagmus,” Am. J. Ophthalmol., 74: 1161 (1975)Google Scholar
  16. Descartes, R., Treatise of Man, (T. S. Hall, Ed. and Trans.), Harvard University Press, Cambridge Mass (1972) (Original work published 1664)Google Scholar
  17. Dodge, R., “Five types of eye movement in the horizontal meridian plane of the field of regard,” Am. J. Physiol., 8: P (1903)Google Scholar
  18. Grusser, O., “Time constant of pre-and post-saccadic recalibration of retinal spatial values as measured by a new after image method,” Investigative Ophthalmology and Visual Science, 25: (Suppl.) 263 (1984)Google Scholar
  19. Guthrie, B., Porter, J. and Sparks, D., “Corollary discharge provides accurate eye position information to the oculomotor system,” Science, 221: 1193–1195 (1983)ADSCrossRefGoogle Scholar
  20. H. von Helmholtz, H., Handbuch der physiologischen Optik, Leipzig: Voss (1867)Google Scholar
  21. Hsu, F., Krishnan, V. V. and Stark, L., “Simulation of ocular dysmetria using a sampled data model of the human saccadic system,” Annals of Biomedical Engineering, 4: 321–329 (1976)CrossRefGoogle Scholar
  22. Kaiman, R. E., “When is a linear control system optimal?” Trans. ASME J bal. Engng, 86D: 51–60 (1964)Google Scholar
  23. Krishnan, V. V., Jury, E. I. and Stark, L., “Biological Optimality: Comparison of generalized feasibility and optimality conditions for linear, error-minimizing systems,” Bull, of Math. Biology, 44: 777–791 (1982)zbMATHGoogle Scholar
  24. Lehman, S. and Stark, L., “Simulation of linear and nonlinear eye movement models: Sensitivity analyses and enumeration studies of time optimal control,” J. of Cybernetics and Information Science, 2: 21–43 (1979)Google Scholar
  25. Lehman, S. and Stark, L., “Multipulse controller signals: I. Pulse width and saccade duration; II. Time optimality; III. Dynamic overshoot,” Biological Cybernetics, 48: 1–10 (1983)CrossRefGoogle Scholar
  26. Matin, L., Picoult, E., Stevens, J. K., Edwards, M. W., Young, D. and MacArthur, R., “Oculoparalytic illusion: Visual-field dependent spatial mislocalization by humans paralyzed with curare,” Science, 216: 198–201 (1982)ADSCrossRefGoogle Scholar
  27. Mittelstaedt, H., “The effect of visual on extraretinal information about the vertical: Suppression or superposition?” Proc. of the XXIII Intl. Cong, of Psychology, Acapulco, Mexico, 2–7 September 1984, Elsevier Science Publishers, Amsterdan (1985)Google Scholar
  28. Nagle, M., Bridgeman, B. and Stark, L., “Voluntary nystagmus, sactadic suppression, and stabilization of the visual world,” Vision Research, 20: 717–721 (1980)CrossRefGoogle Scholar
  29. Noton, D. and Stark, L., “Scanpaths in saccadic eye movements while viewing and recognizing patterns,” Vision Res., 11: 929 (1971)CrossRefGoogle Scholar
  30. Optican, L. M. and Robinson, D. A., “Cerebellar-dependent adaptive control of primate saccadic system,” J Neurophysiol., 44: 1058–1076 (1980)Google Scholar
  31. Pontriagin, L. S., Boltyanskii, V. C., Camkrendze, R. V. and Mischenki, E. F., The Mathematical Theory of Optimal Processes, Translation by K. N. Trirogoff, Interscience, N.Y., John Wiley & Sons, New York (1962)Google Scholar
  32. Selhorst, J. B., Stark, L., Ochs, A. L. and Hoyt, W. F., “Disorders in cerebellar ocular motor control”. I. Saccadic Overshoot Dysmetria: an oculographic, control system, and clinico-anatomic analysis; Brain, 99: 497–508 (1976a)Google Scholar
  33. Selhorst, J. B., Stark, L., Ochs, A. L. and Hoyt, W. F., “Disorders in cerebellar ocular motor control. II. Macrosaccadic Oscillation: an oculographic, control system and clinico-anatomical analysis,” Brain, 99: Brain (1976b)Google Scholar
  34. Shaw, R., “Strange attractors, chaotic behavior, and information flow,” A. Naturforsch, 36A: 80–112 (1981)ADSGoogle Scholar
  35. Shebilske, W., “Extraretinal information in corrective saccades in inflow vs. outflow theories of visual direction constancy,” Vision Res., 16: 621–628 (1976)CrossRefGoogle Scholar
  36. Sparks, D. and Mays, L., “Spatial localization of saccade targets. I. Compensation for stimulation-induced perturbations in eye position; II. Activity of superior colliculus neurons preceding compensatory saccades,” J. of Neurophysiology, 49: 45–74 (1983)Google Scholar
  37. Shults, W., Stark, L., Hoyt, W., and Ochs, A. “Normal saccadic structure of voluntary nystagmus”, Archives of Opthalmology 95: 1399–1404 (1977)Google Scholar
  38. Stark, L., “Stability, oscillations and noise in the human pupil servomechanism,” Proc. IRE, 47: 1925–1939 (1959a)CrossRefGoogle Scholar
  39. Stark, L., “Vision: Servoanalysis of pupil reflex to light,” Medical Physics, 3: 701–719 (1959b)Google Scholar
  40. Stark, L., “Environmental clamping of biological systems: Pupil servomechanism,” J. Opt. Soc. Amer., 52: 925–930 (1962)ADSCrossRefGoogle Scholar
  41. Stark, L., Neurological Control Systems: Studies in Bioengineering, Plenum Press, New York (1968)Google Scholar
  42. Stark, L., “Models of biocontrol systems,” Clinic All-Round, 26: 9 (1977)Google Scholar
  43. Stark, L., “The cerebellum as a calibrator organ”, in Functional Basis of Ocular Motility Disorders, Lennerstrand, G., Zee, D., and Keller, E., pp. 545–548, Stockholm (1982)Google Scholar
  44. Stark, L., “Space constancy and corollary discharge,” Perception & Psychophysics, 37: 272–273 (1985a)CrossRefGoogle Scholar
  45. Stark, L., “The pupil as a paradigm for neurological control systems,” IEEE Trans. Biomed. Engr., BME-31: 919–924 (1985b)CrossRefGoogle Scholar
  46. Stark, L., and Baker, F., “Stability and oscillations in a neurological servomechanism,” J. Neurophysiol., 22: 156–164 (1959)Google Scholar
  47. Stark, L. and Bridgeman, B., “Role of corollary discharge in space constancy,” Perception & Psychophysics, 34: 371–380 (1983)Google Scholar
  48. Stark, L., and Cornsweet, T.N., “Testing a servoanalytic hypothesis for pupil oscillations,” Science, 127: 588 (1958)ADSCrossRefGoogle Scholar
  49. Stark, L. and Sherman, P., “A servoanalytic study of consensual pupil reflex to light”, Journal of Neurophysiology, 20: 17–26 (1957)Google Scholar
  50. Stark, L., Atwood, J., Elkind, J., Houk, J., King, M. and Willis, T., Prog. Rep., Res. Lab. Electr., 63: 215 (1961)Google Scholar
  51. Stark, L., Vossius, G. and Young, L. R., “Predictive control of eye tracking movements,” IRE Trans. on Human Factors in Electronics, HFE-3: 52–57 (1962)CrossRefGoogle Scholar
  52. Stark, L., Kong, R., Schwartz, S., Hendry, D. and Bridgeman, B., “Saccadic suppression of visual displacement,” Vision Res., 16: 1185–1187 (1976)CrossRefGoogle Scholar
  53. Stark, L., Hoyt, W., Ciuffreda, K., Kenyon, R. and Hsu, F., “Time optimal saccadic trajectory model and voluntary nustagmus,” in Models of Oculomotor Behavior and Control, B. L. Zuber, Ed., CRC Press, Boca Raton, Florida, pp. 75-89 (1980)Google Scholar
  54. Stegemann, J., “Uber den einfluss sinusforminger leuchtdichteande-rungen auf die pupillenweite,” Pfluger’s Arch. fur die Gesamte Physiol. des Menschen und der Tiere, 264: 113-122 (1957)Google Scholar
  55. Sun, F., Zhao, X., Dai, S., Liu, H. and Yang, R., “Dynamic characteristics of the pupillary control system: Measurement and mathematical model,” Acta Automat. Sinica, 5, No. 2: 130-135 (1979)Google Scholar
  56. Varju, D., “Der einfluss sinusfoermiger leuchtdichteanderungen auf die mittlere pupillenweite und auf die subjektive helligkeit,” Kybernetik, 2, No. 2: 33–43 (1964)CrossRefGoogle Scholar
  57. Van der Tweel, L. H. and Van der Gon, J. S. D., “The light reflex of the normal pupil of man,” Acta Physiol. Pharmacol. Neerlandica, 8: 69 (1959)Google Scholar
  58. Wiener, N., Cybernetics, or Control and Communication in the Animal and the Machine, M.I.T. Press, Cambridge, Massachusetts (1948)Google Scholar
  59. Young, L. R. and Stark, L., “A discrete model for eye tracking movements,” IEEE Trans. Mil. Electron., MIL-7: 113 (1963a)CrossRefGoogle Scholar
  60. Young, L. R. and Stark, L., “Variable feedback experiments testing a sampled data model for eye tracking movements,” IEEE Trans. Hum. Factors Electron., HFE-4: 38 (1963b)CrossRefGoogle Scholar
  61. Zee, D. S. and Robinson, D. A., “A hypothetical explanation of saccadic oscillations,” Ann. Neurol., 5: 405 (1979)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • L. Stark
    • 1
  1. 1.Neurology UnitUniversity of CaliforniaBerkeleyUSA

Personalised recommendations