Skip to main content

Mechanisms of Transport of Tauroconjugated Bile Acids in the Hepatocyte: Functional Significance

  • Conference paper
Assessment and Management of Hepatobiliary Disease

Abstract

New techniques such as these employing isolated perfused liver, isolated hepatocytes, and, more recently, membrane vesicles and hepatocyte couplets have increased our understanding of hepatic transport processes. The isolated perfused liver is the most complicated model used to study liver transport, because all aspects of hepatic architecture participate in the process. Highly purified canalicular and/or basolateral rat liver membrane vesicle preparations are very useful for exploring transport function in various domains of the plasma membrane and for identifying and isolating putative membrane carriers. Isolated hepatocytes are simple to prepare and are useful especially in studying uptake function of the hepatocyte. One limitation of this model is that isolated liver cells in suspension lose their polarity; thus, it is impossible to examine canalicular excretion processes. This problem has been partially solved by the use of hepatocyte couplets [12, 31]. However, this technique is technically demanding and does not lend itself to quantification of water or solute flux.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aceattino L, Simon FR (1976) Identification and characterization of a bile acid receptor in isolated liver surface membranes. J Clin Invest 57: 496–508

    Article  Google Scholar 

  2. Anwer MS, Hegner D (1978) Effect of Na+ on bile acid uptake by isolated rat hepatocytes. Hoppe Seylers Z Physiol Chem 359: 181–192

    PubMed  CAS  Google Scholar 

  3. Anwer MS, O’Maille ERL, Hofmann AF, Di Pietro RA, Michelotti E (1985) Influence of side-chain charge on hepatic transport of bile acids and bile acid analogues. Am J Physiol 249: G479-G488

    PubMed  CAS  Google Scholar 

  4. Bellentani S, Hardison WGM, Grisendi A, Barbieri I, Manenti F (1984) Bile acid binding to isolated liver plasma membranes: failure to find a specific binding site. Hoppe Seylers Z Physiol Chem 365: 357–363

    Article  PubMed  CAS  Google Scholar 

  5. Bellentani S, Hardison WGM, Marchegiano P, Zanasi G, Manenti F (1986) Bile acid inhibition of taurocholate uptake by rat hepatocyte: role of OH-groups. Am J Physiol, (in press)

    Google Scholar 

  6. Blitzer BL, Boyer JL (1982) Cellular mechanisms of bile formation. Gastroenterology 82: 346–357

    CAS  Google Scholar 

  7. Blitzer BL, Bueler RL (1985) Kinetic and energetic aspects of the inhibition of taurocholate uptake by Na+-dependent amino acids: studies in rat liver plasma membrane vesicles. Am J Physiol 249: G120-G124

    PubMed  CAS  Google Scholar 

  8. Blitzer BL, Terzakis C, Carolan MA (1984) Hydroxyl-bile acid exchange: a new mechanism for the uphill transport of cholate by basolateral liver plasma membrane vesicles (Abstr). Hepatology 4: 1037

    Google Scholar 

  9. Bucuvalas JC, Goodrich A, Blitzer BL, Suchy FJ (1985) Amino acids are potent inhibitors of bile acid uptake by liver plasma membrane vesicles isolated from suckling rats. Pediatr Res 19:1298–1304

    Article  PubMed  CAS  Google Scholar 

  10. Duffy MC, Blitzer BL, Boyer JL (1983) Direct determination of the driving forces for taurocholate uptake into rat liver plasma membrane vesicles. J Clin Invest 72: 1470–1481

    Article  PubMed  CAS  Google Scholar 

  11. Edmondson JW, Miller BA, Lumeng L (1985) Effect of glucagon on hepatic taurocholate uptake: relationship to membrane potential. Am J Physiol 249: G427-G433

    PubMed  CAS  Google Scholar 

  12. Graf J, Gautam A, Boyer JL (1984) Isolated rat hepatocyte couplets: a primary secretory unit for electrophysiologic studies of bile secretory function. Proc Natl Acad Sci USA 81: 6516–6520

    Article  PubMed  CAS  Google Scholar 

  13. Hardison WGM, Bellentani S, Heasley V, Shellhamer S (1984) Specificity of a Na+-dependent transport site in isolated rat hepatocytes. Am J Physiol 246: G477-G483

    PubMed  CAS  Google Scholar 

  14. Iga T, Klaassen CD (1982) Uptake of bile acids by isolated rat hepatocytes. Biochem Pharmacol 31:211–216

    Article  PubMed  CAS  Google Scholar 

  15. Inoue M, Kinne R, Tran T, Arias IM (1982) Taurocholate transport by rat liver sinusoidal membrane vesicles: evidence of sodium cotransport. Hepatology 2: 572–579

    Article  PubMed  CAS  Google Scholar 

  16. Inoue, Kinne R, Tran T, Arias IM (1983) The mechanisms of biliary secretion of reduced glutathione. Analysis of transport process in isolated rat-liver canalicular membrane vesicles. Eur J Biochem 134: 467–471

    Article  PubMed  CAS  Google Scholar 

  17. Kramer W, Bickel U, Buscher HP, Gerok W, Kurz G (1982) Bile-salt-binding polypeptides in plasma membranes of hepatocytes revealed by photoaffinity labelling. Eur J Biochem 129: 13–24

    Article  PubMed  CAS  Google Scholar 

  18. Klaassen CD, Watkins JB III (1984) Mechanisms of bile formation, hepatic uptake, and biliary excretion. Pharmacol Rev 36: 1–67

    PubMed  CAS  Google Scholar 

  19. Marquardt DW (1963) An algorithm for least-squares estimation of non-linear parameters. J SI AM Soc 11: 431–436

    Google Scholar 

  20. Meier PJ, Meier-Abt AS, Barrett C, Boyer JL (1984) Mechanisms of taurocholate transport in canalicular and basolateral rat liver plasma membrane vesicles: evidence for an electrogenic canalicular organic anion carrier. J Biol Chem 259: 10614–10622

    PubMed  CAS  Google Scholar 

  21. Meier PJ, Knickelbein R, Moseley RH, Dobbins JW, Boyer JL (1985) Evidence for carrier-mediated chloride/bicarbonate exchange in canalicular rat liver plasma membrane vesicles. J Clin Invest 75:1256–1263

    Article  PubMed  CAS  Google Scholar 

  22. Moseley RH, Boyer JL (1985) Mechanisms of electrolyte transport in the liver and their functional significance. Semin Liver Dis 5: 122–135

    Article  PubMed  CAS  Google Scholar 

  23. Reichen J, Paumgartner G (1976) Uptake of bile acids by perfused rat liver. Am J Physiol 231: 734–742

    PubMed  CAS  Google Scholar 

  24. Scharschmidt BF, Stephens JE (1981) Transport of sodium, chloride, and taurocholate by cultured rat hepatocyte. Proc Natl Acad Sci USA 78: 986–990

    Article  PubMed  CAS  Google Scholar 

  25. Schwartz LR, Barth CA (1979) Taurocholate uptake by adult rat hepatocytes in primary culture. Hoppe Seylers Z Physiol Chem 360: 1117–1120

    Google Scholar 

  26. Schwartz LR, Burr R, Schwenk M, Pfaff E, Greim H (1975) Uptake of taurocholate into isolated rat liver cells. Eur J Biochem 55: 617–623

    Article  Google Scholar 

  27. Strange RC (1984) Hepatic bile flow. Physiol Rev 64:1055–1103

    PubMed  CAS  Google Scholar 

  28. Van Dyke RW, Stephens JE, Scharschmidt BF (1982) Bile acid transport in cultured rat hepatocytes. Am J Physiol 243: G484-G492

    PubMed  Google Scholar 

  29. Von Dippe P, Levy D (1983) Characterization of the bile acid transport system in normal and transformed hepatocytes. Photoaffinity labeling of the taurocholate carrier protein. J Biol Chem 258: 8896–8901

    Google Scholar 

  30. Von Dippe P, Drain P, Levy D (1983) Synthesis and transport characteristics of photoaffinity probes for the hepatocyte bile acid transport system. J Biol Chem 258: 8890–8895

    Google Scholar 

  31. Watanabe S, Phillips MJ (1984) Ca++ causes active contraction of bile canaliculi: direct evidence from microinjection studies. Proc Natl Acad Sci USA 81: 6164–6168

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Heidelberg

About this paper

Cite this paper

Bellentani, S., Manenti, F., Hardison, W.G.M. (1987). Mechanisms of Transport of Tauroconjugated Bile Acids in the Hepatocyte: Functional Significance. In: Okolicsányi, L., Csomós, G., Crepaldi, G. (eds) Assessment and Management of Hepatobiliary Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72631-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72631-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72633-0

  • Online ISBN: 978-3-642-72631-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics