Skip to main content

Quantitation of Liver Function: Antipyrine Metabolism, an Update

  • Conference paper
Assessment and Management of Hepatobiliary Disease

Abstract

For the majority of drugs, hepatic metabolism is a necessary pathway of elimination. Due to large inter- and intraindividual variations in hepatic metabolism of drugs, it is difficult to predict the actual elimination rate of a therapeutic agent. For many years it was believed that the rate of metabolism of any individual could be estimated from the elimination of a test drug; however, the failure of the antipyrine test to predict the rates of other drugs has demonstrated the inadequacy of such a simple approach. In the case of antipyrine this is probably due to its metabolism by a multiplicity of hepatic cytochrome P-450 enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aarbakke J (1978) Disposition and oxidative metabolism of antipyrine in the rat. Acta Pharmacol Toxicol (Copenh) 42: 63–68

    Google Scholar 

  • Andreasen PB, Vesell ES (1974) Comparison of plasma level of antipyrine, tolbutamide and warfarin after oral and intravenous administration. Clin Pharmacol Ther 16:1059–1065

    PubMed  CAS  Google Scholar 

  • Andreasen PB, Ranek L (1975) Liver failure and drug metabolism. Scand J Gastroenterol 10: 293–297

    PubMed  CAS  Google Scholar 

  • Andreasen PB, Ranek L, Statland BE, Tygstrup N (1974) Clearance of antipyrine dependence of quantitative liver function. Eur J Clin Invest 4: 129–134

    PubMed  CAS  Google Scholar 

  • Andreasen PH, Tonnesen K, Raböl A, Keiding S (1977) Michaelis-Menten kinetics of phenazone elimination in the perfused pig liver. Acta Pharmacol Toxicol (Copenh) 40: 1–13

    Article  CAS  Google Scholar 

  • Ballinger B, Browning M, O’Malley K, Stevensen IM (1972) Drug-metabolizing capacity in states of drug dependence and withdrawal. Br J Pharmacol 45: 638–643

    PubMed  CAS  Google Scholar 

  • Böttcher J, Bässmann M, Schüppel R (1981) Direct quantitation of urinary conjugates of 3–14-C-antipyrine metabolism in man. Naunyn Schmiedebergs Arch Pharmacol [Suppl R5] 316

    Google Scholar 

  • Boobis AR, Brodie MJ, Kahn GC, Toverud EL, Blair IA, Murray S, Davies DS (1981) Comparison of the in vivo and in vitro rates of formation of the three main oxidative metabolites of antipyrine in man. Br J Clin Pharmacol 12: 771–777

    PubMed  CAS  Google Scholar 

  • Bremmelgard A, Rank L, Bahnsen M, Andreasen PB, Christensen E (1983) Cholic acid conjugation test and quantitative liver function in acute liver failure. Scand J Gastroenterol 18: 797–802

    Article  Google Scholar 

  • Brodie BB, Axelrod J (1950) The fate of antipyrine in man. J Pharmacol Exp Ther 98: 97–104

    PubMed  CAS  Google Scholar 

  • Brodie BB, Axelrod J, Soberman R, Levy BB (1949) The estimation of antipyrine in biological materials. J Biol Chem 179: 25–29

    PubMed  CAS  Google Scholar 

  • Danhof M, Breimer DD (1979) Studies on the differential metabolic pathways of antipyrine in man. I. Oral administration of 250, 500 and 1000 mg to healthy volunteers. Br J Clin Pharmacol 8: 529–537

    PubMed  CAS  Google Scholar 

  • Danhof M, Teunissen MWE (1984) Antipyrine as a model drug to assess oxidative drug metabolizing activity in man. Pharm Int 5:11–15

    CAS  Google Scholar 

  • Danhof M, de Groot-van der Vis E, Breimer DD (1979) Assay of antipyrine and its primary metabolites in plasma, saliva and urine by HPLC, and some preliminary results in man. Pharmacology 18: 210–223

    CAS  Google Scholar 

  • Danhof M, van Zeilen A, Boeijinga JK, Breimer DD (1982 a) Studies on the metabolic pathways of antipyrine in man: oral versus i.v. administration and the influence of urinary collection time. Eur J Clin Pharmacol 21: 433–441

    Article  PubMed  CAS  Google Scholar 

  • Danhof M, Verbeck RMA, van Boxtel CJ, Boijinga JK, Breimer DD (1982b) Differential effects of enzyme induction on antipyrine metabolite formation. Br J Clin Pharmacol 13: 379–386

    PubMed  CAS  Google Scholar 

  • Danhof M, Teunissen MWE, Breimer DD (1982 c) 3-hydroxymethyl-antipyrine excretion in urine. A reconsideration of previously published data and synthesis of a pure reference substance. Pharmacology 24:181–184

    Article  PubMed  CAS  Google Scholar 

  • Dossing M, Andreasen PB (1981) Ethanol and antipyrine clearance. Clin Pharmacol Ther 30: 101–104

    Article  PubMed  CAS  Google Scholar 

  • Dossing M, Poulsen HE, Andreasen PB, Tygstrup N (1982) A simple method for determination of antipyrine clearance. Clin Pharmacol Ther 32: 392–396

    Article  PubMed  CAS  Google Scholar 

  • Dossing M, Volund A, Poulsen HE (1983) Optimal sampling times for minimum variance of clearance determination. Br J Clin Pharmacol 15: 231–235

    PubMed  CAS  Google Scholar 

  • Eichelbaum M, Sontag B, Dengler HJ (1981) HPLC determination of antipyrine metabolites. Pharmacology 23:192–202

    Article  PubMed  CAS  Google Scholar 

  • Elin RJ, Vesell ES, Wolff SM (1975) Effects of etiocholanolone-induced fever on plasma antipyrine half-lives and metabolic clearance. Clin Pharmacol Ther 17: 447

    PubMed  CAS  Google Scholar 

  • Greisen G, Andreasen PB (1976) Two-compartment analysis of plasma elimination of phenazone in normals and in patients with cirrhosis of the liver. Acta Pharmacol Toxicol (Copenh) 38: 49–58

    Article  CAS  Google Scholar 

  • Hansen BA, Poulsen HE (1986a) Changes in the hepatic capacity of urea-N synthesis, galactose elimination and antipyrine clearance following 70% hepatectomy in the rat. Scand J Clin Lab Invest 46: 233–237

    Article  CAS  Google Scholar 

  • Hansen BA, Poulsen HE (1986 b) The capacity of urea-N synthesis as a quantitative measure of the liver mass in rats. J Hepatol 2: 460–474

    Article  Google Scholar 

  • Huffman DH, Shoeman DW, Pentikäinen P, Azarnoff DL (1973) The effect of spironolactone on antipyrine metabolism in man. Pharmacology 10: 338–344

    Article  PubMed  CAS  Google Scholar 

  • Inaba T, Uchino H, Kalow W (1981) Identidication of p(4’)-hydroxyantipyrine as a metabolite of antipyrine in man. Res Commun Chem Pathol Pharmacol 33: 3–8

    PubMed  CAS  Google Scholar 

  • Loft S, Haxholdt O, Dossing M (1985) Antipyrine clearance in children from single saliva sample. Br J Clin Pharmacol 19: 698–700

    PubMed  CAS  Google Scholar 

  • Loft S, Sonne J, Pilsgaard H, Dossing M, Poulsen HE (1986) Inhibition of antipyrine elimination by disulfiram and Cimetidine: the effect of concomitant administration. Br J Clin Pharmacol 21: 75–77

    PubMed  CAS  Google Scholar 

  • Ohnhaus EE, Cominx S, Ramos M, Noel PPU (1976) Liver blood flow and enzyme induction in man. Eur J Clin Invest 6: 325

    Google Scholar 

  • Pilsgaard H, Poulsen HE (1984) A one-sample method for antipyrine clearance determinations in rats. Pharmacology 29:110–116

    Article  PubMed  CAS  Google Scholar 

  • Poulsen HE (1985) One sample antipyrine clearance after 90% partial hepatectomy in the rat. Liver 5: 200–204

    PubMed  CAS  Google Scholar 

  • Poulsen HE, Pilsgaard H (1985) Antipyrine metabolism during hepatic regeneration in the rat. Liver 5: 196–199

    PubMed  CAS  Google Scholar 

  • Ramsoe K, Andreasen PB, Ranek L (1980) Functioning liver mass in uncomplicated and fulminant acute hepatitis. Scand J Gastroenterol 15: 65–72

    Article  PubMed  CAS  Google Scholar 

  • Rowland M (1972) Application of clearance concepts to some literature data on drug metabolism in the isolated perfused liver preparation and in vivo. Eur J Pharmacol 17: 352–356

    Article  PubMed  CAS  Google Scholar 

  • Soberman R, Brodie BB, Levy BB, Axelrod J, Hollander V, Steele JM (1949) The use of antipyrine in the measurement of total body water in man. J Biol Chem 179: 31–42

    PubMed  CAS  Google Scholar 

  • Teunissen MWE, Kampf D, Roots I, Vermeulen NPE, Breimer DD (1985). Antipyrine formation in patients with chronic renal failure. Eur J Clin Pharmacol 28: 589–595

    Article  PubMed  CAS  Google Scholar 

  • Toverud EL, Boobis AR, Brodie MJ, Murray S, Bennett PN, Whitmarsh V, Davies DS (1981) Differential induction of antipyrine metabolism by rifampicine. Eur J Clin Pharmacol 21:155–160

    Article  PubMed  CAS  Google Scholar 

  • Tygstrup N, Vilstrup H (1983) Functional evaluation of the hepatocyte. In: Simon Beker G (ed) Diagnostic procedures in the evaluation of hepatic disease. Liss, New York

    Google Scholar 

  • Uchino H, Inaba T, Kalow W (1983) Human metabolism of antipyrine labelled with 14-C in the pyrazolone ring or in the iV-methyl group. Xenobiotica 13:155–162

    Article  PubMed  CAS  Google Scholar 

  • Uppal R, Sharma PR, Nair CR, Chaudhury RR (1980) Enhanced antipyrine metabolism in cigarette smokers in Indian population. Int J Clin Pharmacol Ther Toxicol 18: 269–271

    PubMed  CAS  Google Scholar 

  • Vesell ES (1979) The antipyrine test in clinical pharmacology: conceptions and misconceptions. Clin Pharmacol Ther 26: 275–286

    PubMed  CAS  Google Scholar 

  • Vesell ES (1982) On the significance of host factors that affect drug disposition. Clin Pharmacol Ther31:1–7

    Google Scholar 

  • Vesell ES, Page JG (1968) Genetic control of drug levels in man: antipyrine. Science 161: 72–73

    Article  PubMed  CAS  Google Scholar 

  • Vesell ES, Passananti I, Glenwright PA, Dvorchik BH (1975) Studies on the disposition of antipyrine, aminopyririe and phenacetine using plasma saliva and urine. Clin Pharmacol Ther 18: 259–272

    PubMed  CAS  Google Scholar 

  • Vilstrup H (1980) Synthesis of urea after stimulation with amino acids: relations to liver function. Gut 21:990–995

    Article  PubMed  CAS  Google Scholar 

  • Welch RM, DeAngelis RL, Wingfield M, Farmer TW (1975) Elimination of antipyrine from saliva as a measure of metabolism in man. Clin Pharmacol Ther 18: 249–258

    PubMed  CAS  Google Scholar 

  • Zietz E, Eichelbaum E, Dengler HJ, Spiteller G (1978) Zum Metabolismus von Antipyrin beim Menschen. Arzneimittelforsch 28: 315–318

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Heidelberg

About this paper

Cite this paper

Poulsen, H.E., Loft, S. (1987). Quantitation of Liver Function: Antipyrine Metabolism, an Update. In: Okolicsányi, L., Csomós, G., Crepaldi, G. (eds) Assessment and Management of Hepatobiliary Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72631-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72631-6_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72633-0

  • Online ISBN: 978-3-642-72631-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics