Replication and Pathogenesis of the Human T-Cell Leukemia/Lymphotropic Retroviruses

  • W. Haseltine
  • J. Sodroski
  • C. Rosen
Part of the Haematology and Blood Transfusion / Hämatologie und Bluttransfusion book series (HAEMATOLOGY, volume 31)


Human retroviruses represent an emerging class of complex pathogens involved in a wide variety of maladies, including leukemias and lymphomas, diseases of the central nervous system, and immune function impairment. These have recently been reviewed by Wong-Staal and Gallo. Four different types of human retroviruses have been isolated to date: the etiological agents of a malignant T cell leukemia/lymphoma, the virus HTLV-I which causes the disease ATLL, two viruses associated with more benign forms of T-cell leukemia (HTLV-II), and the etiological agent of the acquired immune deficiency syndrome and related disorders (HIV). Additionally, retroviruses of genomic organization similar to that of HIV but differing markedly in DNA sequence have recently been isolated among persons in West Africa (Kanki et al. 1985; Clavel et al. 1986).


Bovine Leukemia Virus Pp27 Protein Pp27 Gene Human Lymphoid Cell Line Kemia Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aldovini A, De Rossi A, Feinberg MB, Wong-Staal F, Franchini G (1986) Molecular analysis of a deletion mutant provirus of type I human T-cell lymphotropic virus: evidence for a doubly spliced x-lor mRNA. Proc Natl Acad Sci USA 83:38–42PubMedCrossRefGoogle Scholar
  2. 2.
    Blattner WA et al. (1983) J Infect Dis 147:406–412PubMedCrossRefGoogle Scholar
  3. 3.
    Clavel F et al. (1986) Science 233:343–346PubMedCrossRefGoogle Scholar
  4. 4.
    Catovsky D et al. (1982) Lancet 1:639–643PubMedCrossRefGoogle Scholar
  5. 5.
    Chen IS et al. (1983) Proc Natl Acad Sci USA 80:7006–7009PubMedCrossRefGoogle Scholar
  6. 6.
    De Rossi A et al. (1985) Virology 163:640–645Google Scholar
  7. 7.
    Derse D, Casey JW (1986) Science 231:1437–4411PubMedCrossRefGoogle Scholar
  8. 8.
    Felber BK, Paskalis H, Kleinman-Ewing C, Wong-Staal F, Pavlakis GN (1985) Science 229:675–679PubMedCrossRefGoogle Scholar
  9. 9.
    Franchini G et al. (1984) Proc Natl Acad Sci USA 81:6207–6211PubMedCrossRefGoogle Scholar
  10. 10.
    Greene W et al. (1986) Science 232:877PubMedCrossRefGoogle Scholar
  11. 11.
    Hahn B et al. (1983) Nature 305:340–341PubMedCrossRefGoogle Scholar
  12. 12.
    Haralabos P, Felber BK, Pavlakis GN (1986) Cis-acting sequences responsible for the transcriptional activation of human T-cell leukemia virus type I constitute a conditional enhancer. Proc Natl Acad Sci USA 83:6558–6562CrossRefGoogle Scholar
  13. 13.
    Haseltine WA et al. (1984) Science 225:419–421PubMedCrossRefGoogle Scholar
  14. 14.
    Inoue JI, Seiki M, Yoshida N (1986) Febs Lett 209:187–190PubMedCrossRefGoogle Scholar
  15. 15.
    Josephs SF, Wong-Staal F, Manzari V, Gallo RC, Sodroski JG, Trus MD, Perkins D, Patarca R, Haseltine WA (1984) Long terminal repeat structure of an American isolate of type I human T-cell leukemis virus. Virology 139:340–345PubMedCrossRefGoogle Scholar
  16. 16.
    Kanki PJ et al. (1986) Science 232:238–243PubMedCrossRefGoogle Scholar
  17. 17.
    Kiyokama T, Seiki M, Iwashita S, Imagawa K, Shimiza F, Yoshida M (1985) p27x-III and p21x-III, proteins encoded by the pX sequence of human T-cell leukemia virus type I. Proc Natl Acad Sci USA 82:8359–8363CrossRefGoogle Scholar
  18. 18.
    Kunitada S, Masako T, Tsoshiyuki T, Masanao M (1986) Requirement of multiple copies of a 21-nucleotide sequence in the U3 regions of human T-cell leukemia virus type I and type II long terminal repeats for trans-acting activation of transcription. Proc Natl Acad Sci USA 83:8112–8116CrossRefGoogle Scholar
  19. 19.
    Miyoshi I (1981) Nature 294:770–774PubMedCrossRefGoogle Scholar
  20. 20.
    Nagashima K, Yoshida M, Seiki M (1986) A single species of pX mRNA of human T-cell leukemia virus type I encodes trans-activator p40x and two other phosphoproteins. J Virol 60:394–399PubMedGoogle Scholar
  21. 21.
    Poiesz B et al. (1981) Proc Natl Acad Sci USA 77:7415–7419CrossRefGoogle Scholar
  22. 22.
    Popovic M et al. (1983) Proc Natl Acad Sci USA 80:5402–5406PubMedCrossRefGoogle Scholar
  23. 23.
    Rice NR, Stephens RM, Couez D, Deschamps J, Kettmann R, Burny A, Gilden RV (1984) Virology 138:82–93PubMedCrossRefGoogle Scholar
  24. 24.
    Rosen CA, Sodroski JG, Haseltine WA (1985) Proc Natl Acad Sci 82:6502–6506PubMedCrossRefGoogle Scholar
  25. 25.
    Rosen CA, Sodroski JG, Willems L, Kettmann R, Campbell K, Zaya R, Burny A, Haseltine WA (1986) The 3′ region of bovine leukemia virus genome encodes a trans-activator protein. EMBO 5(10):2585–2589Google Scholar
  26. 26.
    Sagata N, Yasunaga T, Tsuzuku-Kawamura J, Ohishi K, Ogawa Y, Ikawa Y (1985a) Complete nucleotide sequence of the genome of bovine leukemia virus: its evolutionary relationship to other retrovirus. Proc Natl Acad Sci USA 82:677–681CrossRefGoogle Scholar
  27. 27.
    Sagata N, Yasunaga T, Igawa Y (1985b) Two distinct polypeptides may be translated from a single splice mRNA of the X genes of human T cell leukemia and bovine leukemia virus. FEBS Lett 192:37–42CrossRefGoogle Scholar
  28. 28.
    Seiki M et al. (1983a) Proc Natl Acad Sci USA 80:3618–3622CrossRefGoogle Scholar
  29. 29.
    Seiki M et al. (1983b) Nature 309:640–642CrossRefGoogle Scholar
  30. 30.
    Seiki M, Hikikoshi A, Taniguchi T, Yoshida M (1985) Science 228:1532–1534PubMedCrossRefGoogle Scholar
  31. 31.
    Seiki M, Inoue J, Takeda T, Yoshida M (1986) Direct evidence that p40x of human T-cell leukemia virus type I is a trans-acting transcriptional activator. EMBO 5(3):561–565Google Scholar
  32. 32.
    Shimotohno et al. (1984) Proc Natl Acad Sci USA 81:6657–6661PubMedCrossRefGoogle Scholar
  33. 33.
    Shimotohno K, Takahashi Y, Shimizyi N, Golde DW, Chen ISY, Miwa M, Sugimara T (1985) Complete nucleotide sequence of an infectious clone of human T-cell leukemia virus type II: an open reading frame for the protease. Proc Natl Acad Sci USA 82:3101–3105PubMedCrossRefGoogle Scholar
  34. 34.
    Slamon DJ, Shimotohno K, Cline MJ, Golde DW, Chen ISY (1984) Science 226:61–65PubMedCrossRefGoogle Scholar
  35. 35.
    Slamon DJ, Press MF, Souza LM, Murdock DC, Cline MJ, Golde DW, Gasson JC, Chen ISY (1985) Science 228:1427–1430PubMedCrossRefGoogle Scholar
  36. 36.
    Sodroski J, Rosen C, Wong-Staal F, Salahuddin SZ, Popovic M, Arya S, Gallo RC, Haseltine WA (1985a) Science 227:171–173CrossRefGoogle Scholar
  37. 37.
    Sodroski J, Rosen C, Goh WC, Haseltine W (1985b) Science 228:1430–1434CrossRefGoogle Scholar
  38. 38.
    Wachsman W, Golde DW, Temple PA, Orr EC, Clark SC, Chen ISY (1985) Science 228:1534–1537PubMedCrossRefGoogle Scholar
  39. 39.
    Watanabe T, Seiki M, Tsujimoto H, Miyoshi I, Hayami M, Yoshida M (1985) Sequence homology of the simian retrovirus genome with human T-cell leukemia virus type I. Virology 114:59–65CrossRefGoogle Scholar
  40. 40.
    Yamamoto M et al. (1982) Science 217:737–740PubMedCrossRefGoogle Scholar
  41. 41.
    Yoshinaka Y, Oroszlan S (1985) Bovine leukemia virus post-envelope gene coded protein: evidence for expression in natural infection. Biochem Biophys Res Com 131:347–354PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • W. Haseltine
    • 1
    • 2
    • 3
  • J. Sodroski
  • C. Rosen
  1. 1.Laboratory of Biochemical PharmacologyDana-Farber Cancer InstituteUSA
  2. 2.Department of PathologyHarvard Medical SchoolUSA
  3. 3.Department of Cancer BiologyHarvard School of Public HealthUSA

Personalised recommendations