DGOR pp 517-527

Substitution Decomposition of Multilinear Functions with Applications to Utility and Game Theory

  • Bernhard von Stengel
Conference paper
Part of the Operations Research Proceedings 1986 book series (ORP, volume 1986)

Abstract

A theory of decomposition “by substitution” for multi-linear (i.e. multi-affine) functions is presented. A representation theorem for such functions is shown to be given by a Moebius inversion formula. The concept of autonomous sets of variables (a “linear separability” of some kind, also known as “generalized utility independence”) captures the decomposition possibilities of a multi-linear function. Their entirety can be hierarchically represented by a so-called composition tree. Distinguished, strong forms of decompositions are shown to be given by multiplicative or additive functions. Important applications to the theories of multi-attribute expected-utilitv functions, switching circuits and cooperative n-person games are outlined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H.A. CURTIS: A New Approach to the Design of Switching Circuits. Van Nostrand, Princeton, N.J. (1962).Google Scholar
  2. [2]
    P.H. FARQUHAR: A Survey of Multiattribute Utility Theory and Applications; in: M. Starr/M. Zeleny (eds.): Multiple Criteria Decision Making. North-Holland, Amsterdam/New York/Oxford (1977), 59–90.Google Scholar
  3. [3]
    P.C. FISHBURN/R.L KEENEY: Seven Independence Concepts and Continuous Multiattribute Utility Functions. J. Math. Psychology 11 (1974), 294–327.CrossRefGoogle Scholar
  4. [4]
    P.C. FISHBURN/R.L. KEENEY: Generalized Utility Independence and Some Implications. Operations Research 23 (1975), 928–940.CrossRefGoogle Scholar
  5. [5]
    W.M. GORMAN: The Structure of Utility Functions. Review of Economic Studies 35 (1968), 367–390.CrossRefGoogle Scholar
  6. [6]
    R.L. KEENEY/H. RAIFFA: Decisions with Multiple Objectives. J. Wiley, New York (1976).Google Scholar
  7. [7]
    N. MEGIDDO: Tensor Decomposition of Cooperative Games. SIAM J. Appl. Math. 29 (1975), 388–405.CrossRefGoogle Scholar
  8. [8]
    R.H. MöHRING/F.J. RADERMACHER: Substitution Decomposition for Discrete Structures and Connections with Combinatorial Optimization. Ann. Discr. Math. 19 (1984), 257–356.Google Scholar
  9. [9]
    G. OWEN: Multilinear Extensions of Games. Management Science 18 (1972), P-64 – P-79.CrossRefGoogle Scholar
  10. [10]
    G.C. ROTA: On the Foundations of Combinatorial Theory I: Theory of Moebius Functions. Z. Wahrscheinlichkeitstheorie 2 (1964), 340–368.CrossRefGoogle Scholar
  11. [11]
    L.S. SHAPLEY: On Committees; in: F. Zwycky/A.G. Wilson (eds.): New Methods of Thought and Procedure. Springer Verlag, Berlin/Heidelberg/New York (1967), 246–270.Google Scholar
  12. [12]
    B. VON STENGEL: Dekomposition Mehrdimensionaler Nutzenfunktionen. Diplomarbeit in Mathematik, Technische Hochschule Aachen (1984).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Bernhard von Stengel
    • 1
  1. 1.Universität PassauDeutschland

Personalised recommendations