Advertisement

Schock pp 19-36 | Cite as

Mikrozirkulationsstörungen im Schock

  • K. Ley
  • P. Gaehtgens
Part of the Klinische Anästhesiologie und Intensivtherapie book series (KAI, volume 33)

Zusammenfassung

Der Mikrozirkulation als Bindeglied zwischen dem Makrokreislaufsystem und den zu versorgenden Organen, Geweben und Zellen kommt beim Schockgeschehen eine Schlüsselrolle zu. Im Bereich der Gefäße mit weniger als 300 μm Durchmesser ist auf der arteriellen Seite die wesentliche Komponente der Regulation des peripheren Widerstandes lokalisiert, der für die Aufrechterhaltung bzw. Wiederherstellung eines ausreichenden Blutdrucks erforderlich ist. Mit ihrer kapillären und venolären Austauschfläche stellt die Mikrozirkulation andererseits das entscheidende Transportorgan zwischen Blut und Gewebe dar. Darüber hinaus kommt der venolären Mikrozirkulation ein erheblicher Anteil am Volumenreservoir zu.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Bagge, U.: White Blood Cell Rheology. Experimental Studies On The Rheologic L Properties Of White Blood Cells In Man And Rabbit And In The In Vitro Flow System. Göteborg: Thesis 1975Google Scholar
  2. 2.
    Chien, S.: Blood Rheology And Its Relation To Flow ResiStance And Transcapillary Exchange, With Special Reference To Shock. Advanc. Microcirc., Vol. 2, P. 89. Basel: Karger 1969Google Scholar
  3. 3.
    Chien, S.: Biophysical Behavior Of Red Cells In Suspensions. In: The Red Blood Cell (Ed. D. M. N. Surgenor), Bd. Ii, P. 1031. New York: Academic Press 1975Google Scholar
  4. 4.
    Dahlberg, B.: Transcapillary Solute Exchange In Skeletal Muscle After Injury And During Shock. Acta Physiol. Scand. 472, Suppl. (1979)Google Scholar
  5. 5.
    Dahlen, S.-E., Björk, J., Hedqvist, P., Arfors, K.-E., Hammars Tröm, S., Lindgren, J.-A., Samuelsson, B.: Leukotrienes Promote Plasma, Leakage And Leukocyte Adhesion In Postcapillary Venules: In Vivo Effects With Relevance To The Acute InFlammatory Response. Proc. Nat. Acad. Sei. (Wash.) W, 388 7 (1981)Google Scholar
  6. 6.
    Del Maestro, R. F., Björk, J., Arfors, K.-E.: Increase In Microvascular Permeability Induced By Enzymatically GeneRated Free Radicals. I. In Vivo Study. Microvasc. Res. 22, 239 (1981)Google Scholar
  7. 7.
    Driessen, G. K.: Über Den Einfluß Veränderter FließeigenSchaften Des Blutes Auf Die Perfusion Der Mikrozirkulation. Habilitationsschrift, Aachen 1982Google Scholar
  8. 8.
    Engelson, E. T., Skalak, T. C., Schmid-Schönbein, G. W.: The Microvasculature In Skeletal Muscle: I. Arteriolar NetWork In Rat Spinotrapezius Muscle. Microvasc. Res. 3_0, 29 (1985)Google Scholar
  9. 9.
    Engler, R. L., Schmid-Schönbein, G. W., Pavelec, R. S.: Leukocyte Capillary Plugging In Myocardial Ischemia And Reperfusion Of The Dog. Amer. J. Path. 111, 98 (1983)PubMedGoogle Scholar
  10. 10.
    Evans, E. A.: Structural Model for Passive Granulocyte Behaviour Based Qn Mechanical Deformation and Recovery After Deformation Tests. In: White Cell Mechanics: Basic Science and Clinical Aspects (Eds. Meiselman, Lichtman, Lacelle ), P. 53. New York: Liss 1984Google Scholar
  11. 11.
    F and Hraeus, R.: Die Strömungsverhältnisse Und Die Verteilung Der Blutzellen Im Gefäßsystem. Klin. Wschr. 7, 100 (1928)Google Scholar
  12. 12.
    Fähraeus, R., Linpqvist, T.: The Viscosity Of Blood In NarRow Capillary Tubes. Amer. J. Physiol. 95, 562 (1931)Google Scholar
  13. 13.
    Gaehtgens, P.: Flow Of Blood Through Narrow Capillaries: Rheological Mechanisms Determining Capillary Hematocrit And Apparent Viscosity. Biorheology V7, 183 (1980)Google Scholar
  14. 14.
    Gaehtgens, P.: Deformation and Activation of Leukocytes - Two Contradictory Phenomena? In: White Cell Mechanics: Basic Science and Clinical Aspects (Eds. Meiselman, Lichtman, Lacelle ), P. 159. New York: Liss 1984Google Scholar
  15. 15.
    Gaehtgens, P., Ley, K., Pries, A. R., Müller, R.: Mutual In Teraction Between Leukocytes And Microvascular Blood Flow. Progr. Appl. Microcirc., Vol. 7, P. 15. Basel: Karger 1985Google Scholar
  16. 16.
    Gaehtgens, P., Pries, A. R., Nobis, U.: Flow Behaviour Of White Ceils In Capillaries. In: White Cell Mechanics: BaSic Science and Clinical Aspects (Eds. Meiselman, Lichtman, Lacelle ), P. 147. New York: Liss 1984Google Scholar
  17. 17.
    Gustafsson, L., Appelgren, L., Myrvold, H. E.: Effects Of Increased Plasma Viscosity And Red Blood Cell Aggregation On Blood Viscosity In Vivo. Amer. J. Physiol. 241, H 513 (1981)Google Scholar
  18. 18.
    Hutchins, P. M., Goldstone, J., Wells, R.: Effects of Hemor Rhagic Shock On The Microvasculature Of Skeletal Muscle. Microvasc. Res. 5, 131 (1973)PubMedCrossRefGoogle Scholar
  19. 19.
    Johnson, P. C., Wayland, H.: Regulation of Blood Flow In Single Capillaries. Amer. J. Physiol. 212, 1405 (1967)PubMedGoogle Scholar
  20. 20.
    Krogh, A.: Studies on The Physiology Of Capillaries. Ii. The Reactions To Local Stimuli Of The Blood Vessels In The Skin And Web Of The Frog. J. Physiol. 55, 412 (1921)Google Scholar
  21. 21.
    Ley, K., Arfors, K.-E.: Changes In Macromolecular PermeabiLity By Intravascular Generation Of Oxygen-Derived Free RaDicals. Microvasc. Res. 225 (1982)Google Scholar
  22. 22.
    Ley, K., Pries, A. R., Gaehtgens, P.: Topological Structure Of Rat Mesenteric Microvessel Networks. Microvasc. Res. (Im Druck)Google Scholar
  23. 23.
    Lindbom, L., Tuma, R. F., Arfors, K.-E.: Influence of Oxygen On Perfused Capillary Density And Capillary Red Cell Velocity In Rabbit Skeletal Mußcle. Microvasc. Res. 19, 197 (1980)PubMedCrossRefGoogle Scholar
  24. 24.
    Messmer, K.: Radioactive Microspheres For Regional Blood Flow Measurements: Actual State And Perspectives. Bibl. Anat. (Basel) T8, 194 (1979)Google Scholar
  25. 25.
    Nobis, U., Pries, A. R., Cokelet, G. R., Gaehtgens, P.: Radial Distribution Of White Cells During Blood Flow In Small Tubes. Microvasc. Res. 29_, 295 (1985)Google Scholar
  26. 26.
    Pries, A. R., Ley, K., Gaehtgens, P.: Generalization of The F and Hraeus Principle For The Analysis Of Hematocrit Reduction In Microvessel Networks. Amer. J. Physiol. (Zur Publikation Eingereicht T985)Google Scholar
  27. 27.
    Reinke, W., Johnson, P., Gaehtgens, P.: Effect of Shear Rate Variation on Apparent Viscosity Of Human Blood In Tubes Of 29 To 94 Jam Diameter. Circulat. Res. (Zur Publika-Tion Eingereicht 1985)Google Scholar
  28. 28.
    Solomon, L. A., Hinshaw/ L. B.: Effect Of Endotoxin On Iso- Gravimetric Capillary Pressure In The Forelimb. Amer. J. Physiol, 214/ 443 (1968)Google Scholar
  29. 29.
    Schmid-Schönbein, G. W., Skalak, R., Usami, S., Chien, S.S Cell Distribution In Capillary Networks. Microvasc. Res. 19, 18 (1980)Google Scholar
  30. 30.
    Skalak, R., Chien, S., Schmip-Schönbein, G. W.: Viscoelastic Deformation of White Cells: Theory And Analysis. In: White Cell Mechanics: Basic Science and Clinical Aspects (Eds. Meiselman, Lichtman, Lacelle)/ P. 3. New York: Liss 1984Google Scholar
  31. 31.
    Taylor, A. E., Granger, D. N.: Exchange of Macromolecules Across The Microcirculation. In: Handbook of Physiology (Ed. Amer. Physiol. Soc.), Section 2, Bd. Iv, P. 467 (1984)Google Scholar
  32. 32.
    Thülesius, O., Johnson/ P. C.: Pre- and Postcapillary Resistance In Skeletal Muscle. Amer. J. Physiol. 210, 869 (1966)PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • K. Ley
  • P. Gaehtgens

There are no affiliations available

Personalised recommendations