Skip to main content

The Stabilization of Cation Binding and its Relation to Na+/K+-ATPase Structure and Function

  • Chapter
The Sodium Pump

Abstract

During the transport cycle of the sodium pump, monovalent cations are somehow smuggled through the low dielectric medium of the plasma membrane as Na+ ions are expelled from the cell and K+ ions taken up. These ions also have specific and well-studied effects on the partial catalytic reactions of the Na+,K+-ATPase activity that accompanies transport. These two aspects of the roles of Na+ and K+ ions in active transport form the subject of the present article. It is an implicit assumption in most studies that the Na+ ions which activate phosphorylation from ATP are indeed the Na+ ions transported and the extracellular K+ ions which catalyze dephosphorylation are taken up by the cell. The central issues in these two aspects are which parts (amino acid residues) of the protein interact directly with the cation and how are the processes involved in ATP hydrolysis linked to transport. Obviously, this last feature also involves cation recognition by the protein but adds to this the question of “coupling” or “transduction”. These are terms used to connote information transfer between different regions of the protein which are directly involved in cation binding, ATP binding, and phosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Argüello, J.M., Kaplan, J.H. (1991) Evidence for essential carboxyls in the cation binding domain of the Na+,K+-ATPase. J Biol Chem, 266: 14627–14635.

    PubMed  Google Scholar 

  2. Argüello, J.M., Kaplan, J.H. (1993) Glutamate 779, an intramembrane carboxyl, is essential for monovalent cation binding by the Na,K-ATPase. J Biol. Chem, in press.

    Google Scholar 

  3. Capasso, J.M., Hoving, S., Tal, D.M., Goldshleger, R., Karlish, S.J.D. (1992) Extensive digestion of Na+,K+-ATPase by specific and non-specific proteases with preservation of cation occlusion sites. J Biol. Chem, 267: 1150–1158.

    PubMed  CAS  Google Scholar 

  4. Chow, D.L., Browning, C.M., Forte, J.G. (1992) Gastric H+,K+-ATPase activity is inhibited by reduction of disulfide bands in β-subunit. Am J Physiol, 263: C39–C44.

    PubMed  CAS  Google Scholar 

  5. Clarke, D.M., Loo, T.W., MacLennan, D.H. (1990) Functional consequences of alterations to polar amino acids located in the transmembrane domain of the Ca2+-ATPase of sarcoplasmic reticulum. J Biol. Chem 265, 6262–6267.

    PubMed  CAS  Google Scholar 

  6. Clarke, D.M., Loo, T.W., Inesi, G., MacLennan, D.H. (1989) Location of high affinity Ca2+-binding sides within the predicted transmembrane domain of the sarcoplasmic reticulum Ca2+-ATPase. Nature 339, 476–478.

    Article  PubMed  CAS  Google Scholar 

  7. Ellis-Davies, G.C.R., Kaplan, J.H. (1990) Binding of Na+ ions to the Na+,K+-ATPase increases the reactivity of an essential residue in the ATP binding domain. J Biol. Chem, 265: 20570–20576.

    PubMed  CAS  Google Scholar 

  8. Ellis-Davies, G.C.R., Kaplan, J.H. (1993) Modification of lysine-501 in the Na+,K+-ATPase reveals coupling between cation occupancy and changes in the ATP binding domain. J Biol. Chem, 268: 11622–11627

    PubMed  CAS  Google Scholar 

  9. Forbush, B. III (1982) Characterization of right-side-out membrane vesicles rich in (Na,K)-ATPase and isolated from dog kidney outer medulla. J Biol. Chem, 257: 12678–12684.

    PubMed  CAS  Google Scholar 

  10. Goldshleger, R., Tal, D.M., Moorman, J., Stein, W.D., Karlish, S J.D. (1992) Chemical modification of Glu-953 of the a-chain of Na+,K+-ATPase associated with inactivation of cation occlusion. Proc Natl. Acad Ssi, 89: 6911–6915.

    Article  CAS  Google Scholar 

  11. Green, N.M., Stokes, D.L. (1992) Structural modeling of P-type ion pumps. Acta Physiol Scand, 146: 59–68

    CAS  Google Scholar 

  12. Jewell-Motz, E.A., Lingrel, J.B. (1993) Site-directed mutagenesis of the Na,K-ATPase: consequences of substitutions to negatively-charged amino acids localized in the transmembrane domains. Biochemistry in press.

    Google Scholar 

  13. Kaplan, J.H. (1991) Localization of ligand binding from studies of chemical modification. In Kaplan, J.H., De Weer, P. (Eds.) The Sodium Pump: Structure, Mechanism and Regulation Rockefeller Univ. Press, NY pp 117–128.

    Google Scholar 

  14. Karlish S.J.D., Goldshleger, R., Stein. W.D. (1990) A 19 kDa C-terminal fragment of the α-chain of Na,K-ATPase is essential for occlusion and transport of cations. Proc Natl. Acad Ssi, 87: 4566–4570.

    Article  CAS  Google Scholar 

  15. Karlish, S.J.D., Goldshleger, R., Tal, D.M., Capasso, J.M., Hoving, S., Stein, W.D. (1992) Identification of the cation binding domain of the Na/K-ATPase. Acta Physiol Scand, 146: 69–76.

    CAS  Google Scholar 

  16. Kawamura, M., Nagano, K. (1984) Evidence for essential disulfide bonds in the β-subunit of (Na+,K+)-ATPase. Biochim Biophys Acta, 774: 188–192.

    Article  PubMed  CAS  Google Scholar 

  17. Kirley, T.L. (1990) Inactivation of (Na+,K+)-ATPase by β-neocaptoethanol. Differential sensitivity to reduction of the three β-sunitunit disulfide bonds. J Biol. Chem, 265: 4207–4232.

    Google Scholar 

  18. Lutsekno, S., Kaplan, J.H. (1993) Molecular events in close proximity to the membrane associated with the binding of ligands to the Na,K-ATPase. J Biol. Chem, in press

    Google Scholar 

  19. Lutsenko, S., Kaplan, J.H. (1992) Evidence of a role for the Na+,K+-ATPase β-subunit in active cation transport. Ann NY Acad Sci, 671: 147–155.

    Article  PubMed  CAS  Google Scholar 

  20. Lutsenko, S., Kaplan, J.H. (1993) An essential role of the extra-cellular domain of the Na+,K+-ATPase β-subunit in ion-occlusion. Biochemistry, 32: 6737–6743.

    Article  PubMed  CAS  Google Scholar 

  21. Pedemonte, C.H., Kaplan, J.H. (1986) Carbodiimide inactivation of Na+,K+-ATPase. A consequence of internal cross-linking and not carobxyl group modification. J Biol. Chem, 261: 3632–3639.

    PubMed  CAS  Google Scholar 

  22. Pedemonte, C.H., Kaplan. J.H. (1990) Chemical modification as an approach to the elucidation of sodium pump structure-function relations. Am J Physiol, 258 (Cell Physiol) C1–C23.

    PubMed  CAS  Google Scholar 

  23. Taylor, W.R., Green, N.M. (1989) The predicted secondary structure of the nucleotidebinding sites of six cation-transporting ATPases lead to a probable tertiary fold. Eur J Biochem, 179: 241–248.

    Article  PubMed  CAS  Google Scholar 

  24. Toney, M.D., Hohenester, E., Cowan, S.W., Jansonius, J.N. (1993) Dialkylglycine decarboxylase structure: bifunctional active site and alkali metal sites. Science, 261: 756–759.

    Article  PubMed  CAS  Google Scholar 

  25. Van Huysse, J.W., Jewell, E.A., Lingrel, J.B. (1993) Site-directed mutagenesis of a predicted cation binding site of Na,K-ATPase. Biochemistry, 32-819–826.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt

About this chapter

Cite this chapter

Kaplan, J.H., Argüello, J.M., Ellis-Davies, G.C.R., Lutsenko, S. (1994). The Stabilization of Cation Binding and its Relation to Na+/K+-ATPase Structure and Function. In: Bamberg, E., Schoner, W. (eds) The Sodium Pump. Steinkopff. https://doi.org/10.1007/978-3-642-72511-1_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72511-1_52

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-642-72513-5

  • Online ISBN: 978-3-642-72511-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics