Skip to main content

Characteristics of transport processes involved in ischemia and reperfusion

  • Chapter
Myocardial Ischemia and Arrhythmia
  • 780 Accesses

Summary

Intracellular homeostasis and the transmembrane transport processes involved depend crucially on driving forces as well as on transport capacities. Normoxic or hypoxie steady-state conditions are characterized by balance of the mechanisms involved, including the level of free energy provided by ATP hydrolysis which is required for active transport. At the transition from ischemia to reperfusion the low transport capacity of the lactate/H+-symporter and the high capacity of the Na+ /H+ -antiporter prevent H+ removal by the former and lead to Na+ accumulation and lowering of the driving force for Na+ by the latter. The intracellular calcium accumulation resulting from the lowered driving force of Na+ in the Na+ /Ca ++-antiporter seems to be one of the most important factors of reperfusion injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson SE, Murphy E, Steenbergen C, London RE, Cala PM (1990) Na-H exchange in myocardium effects of hypoxia and acidification on Na and Ca. Am J Physiol 259: C940 - C948

    PubMed  CAS  Google Scholar 

  2. Bond JM, Herman B, Lemasters JJ (1991) Protection by acidotic pH against anoxia reoxygenation injury to neonatal cardiac myocytes. Biochem Biophys Res Com 179: 798–803

    Article  PubMed  CAS  Google Scholar 

  3. Dart C, Vaughan-Jones RD (1993) Na+-HCO3 -symport in the sheep cardiac purkinje fibre J Physiol 451: 365–385

    Google Scholar 

  4. Dennis SC, Gevers W, Opie LH (1991) Protons in Ischemia: Where Do They Come From; Where Do They Go To? J Mol Cell Cardiol 23: 1077–1086

    Google Scholar 

  5. Duan J, Moffat MP (1992) Contractile and electrophysiological effects of realkalization in cardiac tissue. Role of Na/H exchange and increased ( Ca) i. Adv Exp Med Biol 311: 435–436

    Google Scholar 

  6. Frelin C, Vigne P, Ladoux A, Lazdunski M (1988) The regulation of the intracellular pH in cells from vertebrates. Eur J Biochem 174: 3–14

    Article  PubMed  CAS  Google Scholar 

  7. Hori M, Kitakaze M, Sato H et al. (1991) Staged perfusion attenuates myocardial stunning in dogs. Role of transient acidosis during early reperfusion. Circulation 84: 2135–2145

    Google Scholar 

  8. Kammermeier H: The role of driving forces in myocardial energy metabolism and transport processes. chap. 33. In: Cardiac electrophysiology, circulation, and transport. (eds. Sideman S.; Beyar R.; Kleber AG ). Kluwer Academic Publishers, Boston/Dordrecht/London, (1991) pp. 341–350

    Chapter  Google Scholar 

  9. Karmazyn M (1988) Amiloride enhances postischemic ventricular recovery: possible role of Na +-H+ exchange. Am J Physiol 255: 608–615

    Google Scholar 

  10. Karmazyn M (1993) Na+/H+ Exchange inhibitors reverse lactate-induced depression in postischemic ventricular recovery. Brit J Pharmacol 108: 50–56

    CAS  Google Scholar 

  11. Karmazyn M, Moffat MP (1993) Role of Na+/H+ exchange in cardiac physiology and pathophysiology: mediation of myocardial reperfusion injury by the pH paradox. Cardiovasc Res 27: 915–924

    Article  PubMed  CAS  Google Scholar 

  12. Khandoudi N, Bernard M, Cozzone P, Feuvray D (1990) Intracellular pH and role of Na+/H+ exchange during ischaemia and reperfusion of normal and diabetic rat hearts. Cardiovasc Res 24: 873

    Article  PubMed  CAS  Google Scholar 

  13. Kim D, Cragoe EJ, Smith TW (1987) Relations among sodium pump inhibition. Na-Ca and Na-H exchange activities and Ca-H interactions in cultured chick heart cells. Cir Res 60: 185–193

    Google Scholar 

  14. Kuebler W, Spieckermann PG (1970) Regulation of glycolysis in the ischemic and the anoxic myocardium. J Mol Cell Cardiol 1: 351–377

    Article  Google Scholar 

  15. Langer GA, Peskoff A, Post JA (1993) How does the Na+-Ca2+ exchanger work in the intact cardiac cell? J Mol Cell Cardiol 25: 637–639

    Article  PubMed  CAS  Google Scholar 

  16. Lazdunski M, Frelin C, Vigne P (1985) The sodium/hydrogen exchange system in cardiac cells: Its biochemical and pharmacological properties and its role in regulating internal concentrations of sodium and internal pH. J Mol Cell Cardiol 17: 1029–1042

    Google Scholar 

  17. Mahnensmith RL, Aronson PS (1985) The plasma membrane sodium-hydrogen exchanger and its role in physiological and pathophysiological processes. Circ Res 56: 773

    PubMed  CAS  Google Scholar 

  18. Matsuda N, Kuroda H, Mori T (1991) Beneficial actions of acidotic initial reperfusate in stunned myocardium of rat hearts. Basic Res Cardiol 86: 317–326

    Article  PubMed  CAS  Google Scholar 

  19. Neely JR, Grotyohann LW (1984) Role of glycolytic products in damage to ischemic myocardium. Dissociation of adenosine triphosphate levels and recovery of function of reperfused ischemic hearts. Circ Res 55: 816–824

    Google Scholar 

  20. Neely JR, Morgan HE (1974) Relationship between carbohydrate and lipid metabolism and the energy balance of the heart. Annu Rev Physiol 36: 413–459

    Article  PubMed  CAS  Google Scholar 

  21. Panagiotopoulus S, Daly M, Nayler WG (1990) Effect of acidosis and alkalosis on postischemic Ca gain in isolated rat heart. Am J Physiol 258: H821–H828

    Google Scholar 

  22. Piwnica-Worms D, Jacob R, Horres CR, Lieberman M (1985) Na/H exchange in cultured chick heart cells. J Gen Physiol 85: 43–64

    Article  PubMed  CAS  Google Scholar 

  23. Piwnica-Worms D, Jacob R, Shigeto N, Horres CR, Lieberman M (1986) Na/H exchange in cultured chick heart cells: Secondary stimulation of electrogenetic transport during recovery from intracellular acidosis. J Moll Cell Cardiol 18: 1109–1116

    Google Scholar 

  24. Poole RC, Halestrap AP (1993) Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am J Physiol 264: C761–C782

    PubMed  CAS  Google Scholar 

  25. Poole RC, Halestrap AP (1989) The kinetics of transport of lactate and pyruvate into isolated cardiac myocytes from guinea pig. Biochem J. 264: 409–418

    PubMed  CAS  Google Scholar 

  26. Rovetto MJ, Lamberton WF, Neely JR (1975) Mechanisms of glycolytic inhibition in ischemic rat hearts. Circ Res 37: 742–751

    PubMed  CAS  Google Scholar 

  27. Siffert W, Akkerman JWM (1989) Na +/E1+ exchange and Ca’ influx. FEBS-Letters 259: 1–4

    Article  PubMed  CAS  Google Scholar 

  28. Tani M, Neely JR (1989) Role of intracellular Na+ in Ca’ overload and depressed recovery of ventricular function of reperfused ischemic rat heart. Circ Res 65: 1045–1056

    PubMed  CAS  Google Scholar 

  29. Tani M, Neely JR (1990) Na+ accumulation increases Ca’ overload and impairs function in anoxic rat heart. J Mol Cell Cardiol 22: 57–72

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt

About this chapter

Cite this chapter

Kammermeier, H. (1994). Characteristics of transport processes involved in ischemia and reperfusion. In: Zehender, M., Meinertz, T., Just, H. (eds) Myocardial Ischemia and Arrhythmia. Steinkopff. https://doi.org/10.1007/978-3-642-72505-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72505-0_5

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-642-72507-4

  • Online ISBN: 978-3-642-72505-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics