Skip to main content

Factors determining the arrhythmogenic potency of myocardial ischemia and time course of ischemia related arrhythmias

  • Chapter

Summary

Ventricular arrhythmias which occur in the pre-hospital stage of a myocardial infarction constitute a major cause of death. Acute myocardial ischemia causes multiple electrophysiologic abnormalities which arise from a variety of factors such as extracellular K+ accumulation, increased membrane conductance to K+, intracellular acidosis, increased intracellular [Ca2+], catecholamine release, and accumulation of lysophospholipids and free fatty acid esters. There may be profound changes in all these factors during the first 10–15 min of myocardial ischemia and the arrhythmogenic potency of myocardial ischemia is related to the interplay of these multiple factors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bersohn MM, Philipson KD, Fukushima JY (1982) Sodium—Calcium exchange and sarcolemmal enzymes in ischemic rabbit heart. American Journal of Physiology 242: C288 — C295

    PubMed  CAS  Google Scholar 

  2. Chesnais JM, Corabouef E, Sauviat MP, Vassas JM (1975) Sensitivity to H, Li, and Mg ions of the slow inward current and sodium current in frog atrial fibers. Journal of Molecular and Cellular Cardiology 7: 627–642

    Article  PubMed  CAS  Google Scholar 

  3. Clarkson CW, Ten Eick RE (1983) On the mechanism of lysophosphatidyl choline-induced depolarization of cat ventricular myocardium. Circulation Research 52: 543–556

    PubMed  CAS  Google Scholar 

  4. Colquhoun D, Neher E, Reuter H, Stevens CF (1981) Inward current channels activated by intracellular Ca in cultured cardiac cells. Nature 294: 752–754

    Article  PubMed  CAS  Google Scholar 

  5. Coronel R, Fiolet JW, Wilms-Schopman FJ, Schaapherder AF, Johnson TA, Gettes LS, Janse MJ (1988) Distribution of extracellular potassium and its relation to electrophysiologic changes during acute myocardial ischemia in the isolated perfused porcine heart. Circulation 77: 1125–1138

    Article  PubMed  CAS  Google Scholar 

  6. Corr PB, Gross RW, Sobel BE (1984) Amphipathic metabolites and membrane dysfunction in ischemic myocardium. Circulation Research 55: 135–153

    PubMed  CAS  Google Scholar 

  7. Corr PB, Yamada KA, Creer MH, Sharma AD, Sobel BE (1987) Lysophosphoglycerides and ventricular fibrillation early after the onset of ischemia Journal of Molecular and Cellular Cardiology 19: 43–53

    Google Scholar 

  8. Cuevas J, Bassett AL, Cameron JS, Furukawa T, Myerburg RJ, Kimura S (1991) Effect of H+ on ATP-regulated K+ channels in feline ventricular myocytes. American Journal of Physiology 261: H755–761

    PubMed  CAS  Google Scholar 

  9. Deutsch N, Klitzner TS, Lamp ST, Weiss JN (1991) Activation of cardiac ATP-sensitive K+ current during hypoxia: correlation with tissue ATP level. American Journal of Physiology 261: H671–676

    PubMed  CAS  Google Scholar 

  10. Faivre J-F, Findlay I (1990) Action potential duration and activation of ATP-sensitive K+ channels in guinea-pig cardiac myocytes. Biochimica Biophysica Acta 1029: 167–172

    Article  CAS  Google Scholar 

  11. Garan H, Fallon JT, Ruskin JN (1990) Sustained ventricular tachycardia in recent canine myocardial infarction. Circulation 62: 980–987

    Google Scholar 

  12. Gettes LS, Reuter H (1974) Slow recovery from inactivation of inward currents in mammalian myocardial fibers. Journal of Physiology 240: 703–724

    PubMed  CAS  Google Scholar 

  13. Harris AS (1950) Delayed development of ventricular ectopic rhythms following experimental coronary occlusion. Circulation, 1: 1318–1328

    PubMed  CAS  Google Scholar 

  14. Hill JL, Gettes LS (1980) Effect of acute coronary artery occlusion on local myocardial extracellular K+ activity in swine. Circulation 61: 768–778

    PubMed  CAS  Google Scholar 

  15. Irasawa H, Sato R (1986) Intra-and extracellular effects of proton on the calcium current of isolated guinea pig ventricular cells. Circulation Research 59: 348–355

    Google Scholar 

  16. Janse MJ, Wit AL (1989) Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiological Reviews 69: 1049–1168

    PubMed  CAS  Google Scholar 

  17. Kabell G, Brachmann J, Scherlan BJ, Harrison L, Lazzara R (1984) Mechanisms of ventricular arrhythmias in multi-vessel coronary disease: the effects of collateral zone ischemia. American Heart Journal 108: 447–454

    Article  PubMed  CAS  Google Scholar 

  18. Kaplinsky E, Ogawa S, Balke CW, Dreifus LS (1979) Two periods of early ventricular arrhythmias in the canine acute infarction model. Circulation 60: 397–403

    PubMed  CAS  Google Scholar 

  19. Karaguezian HS, Fenoglio JJ, Weiss MB, Wit AL (1979) Protracted ventricular tachycardia induced by premature stimulation of the canine heart after coronary artery occlusion and reperfusion. Circulation Research 44: 833–846

    Google Scholar 

  20. Keung EC, Li Q (1991) Lactate activates ATP-sensitive K+ channels in guinea pig ventricular myocytes. Journal of Clinical Investigation 88: 1772–1777

    Article  PubMed  CAS  Google Scholar 

  21. Kirsch GE, Codina J, Birnaumer L, Brown AM (1990) Coupling of ATP-sensitive K + channels to Al receptors by G proteins in rat ventricular myocytes. American Journal of Physiology 259: H820–826

    PubMed  CAS  Google Scholar 

  22. Kleber AG (1983) Resting membrane potential, extracellular potassium activity and intracellular sodium activity during acute global ischemia in isolated perfused guinea-pig hearts. Circulation Research 52: 442–450

    PubMed  CAS  Google Scholar 

  23. Kleber AG (1984) Extracellular potassium accumulation in acute myocardial ischemia. Journal of Molecular and Cellular Cardiology. 16: 389–394

    Article  PubMed  CAS  Google Scholar 

  24. Kodama I, Wilde AAM, Janse MJ, Durrer D, Yamada K (1984) Combined effects of hypoxia, hyperkalemia, and acidosis on membrane action potential and excitability of guinea-pig ventricular muscle. Journal of Molecular and Cellular Cardiology 16: 248–256

    Article  Google Scholar 

  25. Kuller L, Lilienfeld A, Fisher R (1966) Epidemiological study of sudden and unexpected deaths due to arteriosclerotic heart disease. Circulation 34: 1056–1068

    PubMed  CAS  Google Scholar 

  26. Liberthson RR, Nagel EL, Hirschmann JC, Nussenfeld SR, Blackbourne BD, Davis JH (1974) Pathophysiologic observation in pre-hospital ventricular fibrillation and sudden cardiac death. Circulation 49: 790–798

    PubMed  CAS  Google Scholar 

  27. Lederer WJ, Nichols CG (1989) Nucleotide modulation of the activity of rat heart ATP-sensitive K+ channels in isolated membrane patches. Journal of Physiology 419: 193–211

    PubMed  CAS  Google Scholar 

  28. Marban E, Kitakaze M, Kusuoka H, Porterfield JK, Yue DT, Chacko VP (1987) Intracellular free calcium concentration measured with 19FNMR spectroscopy in intact ferret hearts. Proceedings of the National Academy of Sciences USA 84: 6005–6009

    Article  CAS  Google Scholar 

  29. Mathur PP, Case RB (1973) Phosphate loss during reversible myocardial ischemia. Journal of Molecular and Cellular Cardiology 5: 375–393

    Article  PubMed  CAS  Google Scholar 

  30. Mohabir R, Lee HC, Kurz RW, Clusin WT (1991) Effects of ischemia and hypercarbic acidosis on myocyte calcium transients, contraction, and pH; in perfused rabbit hearts. Circulation Research 69: 1525–1537

    PubMed  CAS  Google Scholar 

  31. Moreno H, Janse MN, Fiolet JWT, Krieger WJG, Crijns H, Durrer D (1980) Comparison of the effects of regional ischemia, hypoxia, hyperkalemia, and acidosis on intracellular and extracellular potentials and metabolism in the isolated porcine heart. Circulation Research 46: 634–646

    Google Scholar 

  32. Morley GE, Anumonwo JMB, Delmar M (1992) Effects of 2,4-dinitrophenol or low [ATP]; on cell excitability and action potential propagation in guinea pig ventricular myocytes. Circulation Research 71: 821–830

    PubMed  CAS  Google Scholar 

  33. Nichols CG, Ripoll C, Lederer WJ (1991) ATP-sensitive potassium channel modulation of guinea pig ventricular action potential and contraction. Circulation Research 68: 280–287

    PubMed  CAS  Google Scholar 

  34. Noma A (1983) ATP-regulated K+ channels in cardiac muscle. Nature 305: 147–148

    Article  PubMed  CAS  Google Scholar 

  35. Noma A, Tsuboi N (1987) Dependence of junctional conductance on proton, calcium and magnesium ions in cardiac paired cells of guinea-pig. Journal of Physiology 382: 193–211

    PubMed  CAS  Google Scholar 

  36. Penny WJ (1983) The deleterious effects of myocardial catecholamines on cellular electrophysiology and arrhythmias during ischemia and reperfusion. Cardiovascular Research 17: 363–372

    Article  PubMed  CAS  Google Scholar 

  37. Pike MM, Kitakaze M, Marban E (1990) 23Na-NMR measurements of intracellular sodium in intact perfused ferret hearts during ischemia and reperfusion. American Journal of Physiology 259: H1767–1773, 1990

    PubMed  CAS  Google Scholar 

  38. Riegger CB, Alperovich G, Kleber AG (1989) Effect of oxygen withdrawal on active and passive electrical properties of arterially perfused rabbit papillary muscle. Circulation Research 61: 271–279

    Google Scholar 

  39. Rovetto MJ, Whitmer JT, Neely JR (1973) Comparison of the effects of anoxia and whole heart ischemia on carbohydrate utilization in isolated working rat hearts. Circulation Research 32: 699–707

    PubMed  CAS  Google Scholar 

  40. Saman S, Opie LH (1984) Mechanism of reduction of action potential duration of ventricular myocardium by exogenous lactate. Journal of Molecular Cellular Cardiology 16: 659–654

    Article  CAS  Google Scholar 

  41. Sanguinetti MC, Scott AL, Zingaro GJ, Siegal PK (1988) BRL 34915 (cromakalim) activated ATP-sensitive K + channel in cardiac muscle. Proceeding of the National Academy of Sciences USA 85: 6954–6958

    Article  Google Scholar 

  42. Sato R, Noma A, Kurachi Y, Irisawa H (1985) Effects of intracellular acidification on membrane currents in ventricular cells of the guinea pig. Circulation Research 57: 553–561

    PubMed  CAS  Google Scholar 

  43. Schoemig A, Dart AM, Dietz R, Mayer E, Kuenler W (1984) Release of endogenous catecholamines in the ischemic myocardium of the cat. Part A: locally mediated release. Circulation Research 55: 689–701

    CAS  Google Scholar 

  44. Shine KI, Douglas AM, Ricchiuti NV (1977) Ischemia in isolated ventricular septa: mechanical events. American Journal of Physiology 232: H564–571, 1977

    PubMed  CAS  Google Scholar 

  45. Steenbergen C, Murphy E, Levy L, London RE (1987) Elevation in cytosolic free calcium concentration early in myocardial ischemia in perfused rat heart. Circulation Research 60: 700–707

    PubMed  CAS  Google Scholar 

  46. Venkatesh N, Stuart JS, Lamp ST, Alexander LD, Weiss JN (1992) Activation of ATP-sensitive K + channels by cromakalim. Effects on cellular K+ loss and cardiac function in ischemic and reperfused mammalian ventricle. Circulation Research 71: 1324–1333

    PubMed  CAS  Google Scholar 

  47. Weiss JN (1991) Biochemical and metabolic aspects of arrhythmias. In: El-Sherif N, Samet P (eds) Cardiac Pacing and Electrophysiology, W.B. Saunders, Philadelphia, pp. 57–76

    Google Scholar 

  48. Weiss J, Hiltbrand B (1985) Functional compartmentation of glycolytic versus oxidative metabolism in isolated rabbit heart. Journal of Clinical Investigation 75: 436–447

    Article  PubMed  CAS  Google Scholar 

  49. Weiss JN, Lamp ST, Shine KI (1989) Cellular K+ loss and anion efflux during myocardial ischemia and metabolic inhibition. American Journal of Physiology 256: H1165–1173

    PubMed  CAS  Google Scholar 

  50. Weiss JN, Shine KI (1982) Extracellular K+ accumulation during myocardial ischemia in isolated rabbit heart. American Journal of Physiology 242: H619–628

    PubMed  CAS  Google Scholar 

  51. Weiss JN, Shine KI (1982) [K]0 accumulation and electrophysiologic alterations during early myocardial ischemia. American Journal of Physiology 243: H318–327

    Google Scholar 

  52. Weiss JN, Venkatesh N, Lamp ST (1992) ATP-sensitive K + channels and cellular K + loss in hypoxic and ischemic mammalian ventricle. Journal of Physiology 447: 649–673

    PubMed  CAS  Google Scholar 

  53. Wit AL, Rosen MR (1986) Afterdepolarizations and triggered activity. In Fozzard HA, Haber E, Jennins RB, Katz AM, Morgan HE (eds) The Heart and Cardiovascular System: Scientific Foundations. Raven Press, New York, pp 1449–1490

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt

About this chapter

Cite this chapter

Deutsch, N., Weiss, J.N. (1994). Factors determining the arrhythmogenic potency of myocardial ischemia and time course of ischemia related arrhythmias. In: Zehender, M., Meinertz, T., Just, H. (eds) Myocardial Ischemia and Arrhythmia. Steinkopff. https://doi.org/10.1007/978-3-642-72505-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72505-0_10

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-642-72507-4

  • Online ISBN: 978-3-642-72505-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics