Skip to main content

Bildung und Umbildung von Tonmineralen

  • Chapter
Tonminerale und Tone
  • 551 Accesses

Zusammenfassung

Bildung und Umbildung von Tonmineralen in ihren unterschiedlichen chemischen wie strukturellen Eigenschaften werden weitgehend durch die großen natürlichen Reaktionsräume, die sogen. Environments bestimmt, die von Millot (73) definiert wurden. Im Folgenden werden behandelt: das „Verwitterungsenvironment“, das „sedimentäre Environment“ und das „diagenetisch-hydrothermale Environment“. Die Tonmineralbildung in der Verwitterungszone wird bestimmt durch die Wechselwirkung der Gesteine in der obersten kontinentalen Erdkruste mit der Hydrosphäre. Mit dem Zerfall der Gesteine in Einzelminerale setzt bereits die chemische Verwitterung ein, d. h. der Lösungsprozeß durch die wäßrige Phase. Die Porenlösung füllt den Raum zwischen den Körnern aus und wird vom sauren Niederschlagswasser bei Verdunstung und Abfluß immer wieder nachgeliefert. Tonminerale scheiden sich in langdauernden chemischen Prozessen aus der Porenlösung aus, wenn bestimmte Sättigungsgrenzen durch gelöstes Material erreicht sind. Aus einem anfänglichen Mineralgrus von Eruptivgesteinen wird mit fortschreitender Verwitterungstätigkeit ein Boden, bestehend aus detrischen, d. h. nur teilweise gelösten primären Mineralen und neugebildeten Tonmineralen, was kennzeichnend für die Verwitterungszone ist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Aagaard P, Helgeson HC (1983) Activity/compositon relations among silicates and aquous solutions II. Chemical and thermodynamic consequences of ideal mixing of atoms on homological sites in montmorillionites, illites and mixed-layer clays. Clays Clay Min 31: 207–217

    Article  Google Scholar 

  2. Ahn JH, Peacor DR (1986) Transmission and analytical electron microscopy of the smectite-to-illite transition. Clays Clay Min 34: 165–179

    Article  Google Scholar 

  3. Ahn JH, Peacor DR (1989) Illite/smectite from gulf coast shales: A reappraisal of transition. Clays Clay Min 37: 542–546

    Article  Google Scholar 

  4. Banfield JF, Eggleton RA (1988) Transmission electron microscope study of biotite weathering. Clays Clay Min 36: 47–60

    Article  Google Scholar 

  5. Banfield JF, Eggleton RA (1990) Analytical transmission electron microscope studies of plagioclase, muscovite and K-feldspar weathering. Clays Clay Min 38: 77–89

    Article  Google Scholar 

  6. Baronnet A (1982) Growth kinetics of the silicates. A review of basic concepts. Fortschr d Min 38: 185–198

    Google Scholar 

  7. Barshad I (1966) The effect of variation in precipitation on the nature of clay mineral formation in soils from acid and basic igneous rocks. In: Heller L, Weiss A (eds) Proc Intern Clay Conf (1966) vol I. Jerusalem Israel Program for Sientific Translation, pp 167–173

    Google Scholar 

  8. Bell TE (1986) Microstructure in mixed-layer illite/smectite and its relationship to the reaction of smectite to illite. Clays Clay Min 34: 146–154

    Article  Google Scholar 

  9. Bethge CM, Vergo N, Altaner SP (1986) Pathways of smectite illitization. Clays Clay Min 34: 125–135

    Article  Google Scholar 

  10. Boettcher AL (1966) Vermiculite, hydrobiotite and biotite in the rainy creek igneous complex near Libby Montana. Clay Min 6; 283–296

    Article  Google Scholar 

  11. Boles JR, Franks SG (1979) Clay diagenesis in Wilcox Sandstones of south-west Texas: implications of smectite diagenesis on sandstone cementation. Journ Sedim Petrology 49: 55–70

    Google Scholar 

  12. Burst JF (1969) Diagenesis of Gulf Coast clayly sediments and its possible relationship to petroleum migration. Am Assoc Petr Bull 33: 73–93

    Google Scholar 

  13. Caillère S, Hénin S (1962) Vues d’ensemble sur le problème de la synthèse des minéraux argileux a basse température. Colloque No. 105 du C.N.R.S. In: Geneśe et synthèse des argiles 32–41; Editions du colloques internationaux du centre national de la recherche scientifique Paris

    Google Scholar 

  14. Chang HK, Mackenzie FT, Schoonmaker I (1986) Comparisons between the diagenesis of dioctahedral and trioctahedral smectite, Brazilian Offshore basins. Clays Clay Min 34: 407–423

    Article  Google Scholar 

  15. Churchman G J, Jackson ML (1976) Reaction of montmorillonite with acid aqueous solutions: solute activity control by a secondary phase. Geochim Cosmochim Acta 40: 1251–1259

    Article  Google Scholar 

  16. Correns CW, Engelhardt W von (1938) Neue Untersuchungen über die Verwitterung des Kalifeldspats. Chemie der Erde 12: 1–22

    Google Scholar 

  17. Correns CW (1963) Experiments on the decomposition of silicates and discussion of chemical weathering. Clays Clay Min 10: 443–459

    Article  Google Scholar 

  18. Decarreau A (1980) Cristallogenèse experimentale des smectites magnesiennes: hectorite, stevensite. Bull Mineral 103: 579–590

    Google Scholar 

  19. Decarreau A (1981) Cristallogenèse à basse temperature des smectites trioctaédrique par viellement de comprecipites silico métallique de formule (Si4−x) M3O10nH2O. C R Acad Sci Paris 292: 61–64

    Google Scholar 

  20. Decarreau A (1985) Partitioning of divalent transition elements between octahedral sheets of trioctahedral smectites and water. Geochim Cosmochim Acta 49: 1537–1544

    Article  Google Scholar 

  21. Drever JI (1982) The geochemistry of natural waters. Prentice Hall, Englewood Cliffs, N J

    Google Scholar 

  22. Eberl DD, Hower I (1976) Kinetics of illite formation. Bull Geol Soc Am 87: 1326–1330

    Article  Google Scholar 

  23. Eberl DD, Hower I (1977) The hydrothermal transformation of sodium and potassium smectite into mixed layer clay. Clays Clay Min 25: 215–228

    Article  Google Scholar 

  24. Eberl DD (1980) Alkali cation selectivity and fixation by clay minerals. Clays Clay Min 28: 161–172

    Article  Google Scholar 

  25. Eberl DD (1984) Clay mineral formation and transformation in rocks and soils. Phil Trans Royal Soc London A 311: 241–257

    Article  Google Scholar 

  26. Engelhardt W von (1960) Der Porenraum der Sedimente. In: von Engelhardt W, Zeemann J (eds) Mineralogie u. Petrographie in Einzeldarstellungen. Springer, Berlin Göttingen Heidel¬berg

    Google Scholar 

  27. Engelhardt W von (1977) The origin of sedimentary rocks, Part I II. In: v Engelhardt W, Füchtbauer H, Müller G (eds) Sedimentary Petrology. Halstead Press Book Wiley, New York

    Google Scholar 

  28. Fanning DS, Keramidas V Z (1977) Micas in minerals and soil environments. In: Dinauer DC (ed) Soil Science Society of America, Madison USA, pp 195–258

    Google Scholar 

  29. Farmer VC, Fraser AR, Tait JM (1979) Characterization of the chemical structures of natural and synthetic aluminosilicate gels and sols by infrared spectroscopy. Geochim Cosmochim Acta 43: 1417–1420

    Article  Google Scholar 

  30. Garrels RM, Christ CL (1965) Solutions, minerals and equilibria. Freemann Cooper a Co, San Francisco

    Google Scholar 

  31. Garrels R M (1984) Montmorillonite/illite stability diagrams. Clays Clay Min 32: 161–166

    Article  Google Scholar 

  32. Güven N, Hower WF, Davies DK (1980) Nature of authigene illites in sandstone reservoirs. Sedim Petrology 50: 761–766

    Google Scholar 

  33. Güven N (1988) Smectites. In: Bailey SW (ed) Hydrous phyllosilicates, Reviews in Mineralogy, Mineral Soc Amer vol 19. pp 497–552

    Google Scholar 

  34. Guthrie GD, Veblen DR (1989) High-resolution transmission electron microscopy of mixed-layer illite/smectite: Computer simulations. Clays Clay Min 37: 1–11

    Article  Google Scholar 

  35. Harder H (1970) Kaolinitsynthese bei niedrigen Temperaturen. Naturwissenschaften 57: 193

    Article  Google Scholar 

  36. Harder H (1972) The role of magnesium in the formation of smectite minerals. Chem Geol 14: 241–253

    Article  Google Scholar 

  37. Harder H (1978) Synthesis of iron-layer silicates under natural conditions. Clays Clay Min 26: 65–72

    Article  Google Scholar 

  38. Helgeson HC, Garrels RM, Mackenzie FT (1969) Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions, II Applications. Geochim Cosmochim Acta 33: 455–481

    Article  Google Scholar 

  39. Hemni T, Wada K (1976) Morphology and composition of allophane. Am Min 61: 379–390

    Google Scholar 

  40. Hower J (1961) Some factors concerning the nature and origin of glaukonite. Am Min 46: 313–334

    Google Scholar 

  41. Hower J, Eslinger EV, Hower ME, Perry EA (1976) Mechanism of burial metamorphism of argillacious sediment. C. Mineralogical and chemical evidence. Bull Geol Soc Am 87: 725–737

    Article  Google Scholar 

  42. Hurst A, Irvin HI (1982) Geological modelling of clay diagenesis in sandstones. Clay Miner 17: 5–22

    Article  Google Scholar 

  43. Imbert T, Desprairies A (1987) Neoformation of halloysite on vulcanic glass in marine environment. Clay Min 22: 179–185

    Article  Google Scholar 

  44. Inoue A (1987) Conversion of smectite to chlorite by hydrothermal and diagenetic alterations. Hokuroku Kusoko mineralization area, northeast Japan. Proc Intern Clay Conf Denver 1985, 158–164

    Google Scholar 

  45. Inoue A, Kokyama N, Kilagawa R, Watanabe T (1987) Chemical and morphological evidence for the conversion of smectite to illite. Clays Clay Min 35: 111–120

    Article  Google Scholar 

  46. Inoue A, Velde B, Meunier A, Touchard G (1988) Mechanism of illite formation during smectite-to-illite conversion in a hydrothermal system. Am Min 73: 1325–1334

    Google Scholar 

  47. Inoue A, Utada M (1991) Smectite-to-chlorite transformation in thermally metamorphosed voleanoclastic rocks in the Kamikita area, northern Hanshu, Japan. Am Min 76: 628–640

    Google Scholar 

  48. Isphording WC (1973) Discussion of the occurence and origin of sedimentary palygorskite-sepiolite deposites. Clays Clay Min 21: 313–401

    Article  Google Scholar 

  49. Jasmund K, Riedel D (1961) Untersuchungen des tonigen Zwischenmittels im Hauptbuntsandstein der Nordeifel. Bull Geol Inst Upsala, vol XL, pp 247–257

    Google Scholar 

  50. Jasmund K, Riedel D, Keddeines H (1969) Neubildung von leistenförmigem Illit und von Dickit bei der Zersetzung des Muskovits in Sandstein. In: Heller L (ed) Proc Intern Clay Conf Tokyo, Japan. Israel Universities Press, Jerusalem, pp 493–500

    Google Scholar 

  51. Jasmund K (1991) Von den Tonkolloiden zu den Tonmineralen. In: Tributh H, Lagaly G (Hrsg) Identifizierung und Charakterisierung von Tonmineralen. Deutsche Ton- und Ton- mineralgr, Gießen S 11–17

    Google Scholar 

  52. Jeans CV (1971) The neoformation of clay minerals in brackish and marine environments. Clay Min 9: 209–217

    Article  Google Scholar 

  53. Jiang W-T, Essene EJ, Peacor DR (1990) Transmission electron microscopy study of coexisting pyrophyllite and muscovite: direct evidence for the metastability of illite. Clays Clay Min 38: 225–240

    Article  Google Scholar 

  54. Jiang W-T, Peacor DR (1991) Transmission electron microscopic study of the kaolinization of muscovite. Clays Clay Min 39: 1–13

    Article  Google Scholar 

  55. Jones BF, Galan E (1988) Sepiolite and palygorskite. In: Bailey SW (ed) Hydrous phyllosilicates, vol 19, pp 631–667 Reviews in Mineralogy: Mineral Soc Amer

    Google Scholar 

  56. Johns WD (1979) Clay mineral catalysis and petroleum generation. Am Rev Earth Planetary Sci: 183–198

    Google Scholar 

  57. Keller WD (1970) Environmental aspects of clay minerals. J Sedimentary Petrology 40: 788–813

    Google Scholar 

  58. Kittrick JA (1966) Free energy of formation of kaolinite from solubility. Am Min 51: 1457–1466

    Google Scholar 

  59. Kittrick JA (1970) Precipitation of kaolinite at 25 °C and 1 atm. Clays Clay Min 18: 261–268

    Article  Google Scholar 

  60. Kittrick JA (1973) Mica-derived vermiculites as unstable intermediates. Clays Clay Min 21: 479–488

    Article  Google Scholar 

  61. Kittrick JA (1984) Stability measurements of phases in three illites. Clays Clay Min 33: 115–124

    Article  Google Scholar 

  62. Kohler EE, Köster HM (1976) Zur Mineralogie, Kirstallchemie und Geochemie kretazischer Glaukonite. Clay Min 11: 273–302

    Article  Google Scholar 

  63. Kübler B (1973) La corrensite, indicateur possible de milieux de sedimentation et du degrée de transformation d’un sediment. Bull Centre Rech Pau SNPA 7: 543–556

    Google Scholar 

  64. La Iglesia A, Oosterwyck-Gastuche MC van (1978) Kaolinite synthesis I. Crystallization conditions at low temperatures and calculation of thermodynamic equilibria. Application to laboratory and field observations. Clays Clay Min 26: 397–408

    Article  Google Scholar 

  65. Lanson B, Champion D (1991) The I/S-to-illite reaction in the late stage diagenesis. Am J Sci 291: 473–506

    Article  Google Scholar 

  66. Linares J, Huertas F (1971) Kaolinite: Synthesis at room temperature. Science 171: 896–897

    Article  Google Scholar 

  67. Lippmann F (1977) The solubility products of complex minerals, mixed crystals and three-layer clay minerals. N Jb Min Abh 130: 243–263

    Google Scholar 

  68. Lippmann F (1979) Stabilitätsbeziehungen der Tonminerale. N Jb Min Abh 136: 287–309

    Google Scholar 

  69. Lippmann F (1982) The thermodynamic status of clay minerals. In: Olphen H van, f Veniak, (eds) Proc 7. Intern Clay Conf Bologna, Pavia, 1981 Elsevier, Amsterdam pp 475–485

    Google Scholar 

  70. Magara K (1975) Réévaluation of montmorillonite dehydration as cause of abnormal pressure and hydrocarbon migration. Am Assoc Petrol Geol Bull 5: 292–302

    Google Scholar 

  71. May HM, Kinniburgh DG, Helmke PA, Jackson ML (1986) Aqueous dissolution, solubilities and thermodynamic stabilities of common aluminosilieate clay minerals: kaolinite and smectites. Geochim Cosmochim Acta 50: 1667–1677

    Article  Google Scholar 

  72. Merino E, Ramson B (1982) Free energies of formation of illite solid solutions and their compositional dependence. Clays Clay Min 30: 29–39

    Article  Google Scholar 

  73. Millot G (1970) Geology of clays. Springer, New York Heidelberg Berlin

    Google Scholar 

  74. Mosser Ch (1974) Illites en lattes, illites pseudohexagonales, processus de formation: Experimentation. Clay Min 10: 145–151

    Article  Google Scholar 

  75. Müller G (1961) Die rezenten Sedimente im Golf von Neapel 2. Mineralneu- und Umbildungen in den rezenten Tuf fiten des Golfes von Neapel. Ein Beitrag zur Umwandlung vulkanischer Gläser durch Halmyrolyse. Beitr Min Petrogr: 1–20

    Google Scholar 

  76. Nadeau PH, Wilson MJ, McHardy WJ, Tait JM (1984) Interparticle diffration: A new concept for interstratified clays. Clay Min 19: 757–769

    Article  Google Scholar 

  77. Nadeau PH, Wilson MJ, McHardy WJ, Tait JM (1984) Interstratified XRD characteristics of physical mixtures of elementary clay particles. Clay Min 19: 67–76

    Article  Google Scholar 

  78. Nadeau P H, Wilson M J, McHardy W J, Tait J M (1985) The conversion of smectite to illite during diagenesis: Evidence from some illite clays from betonites and sandstones. Min Mag 49: 393–400

    Article  Google Scholar 

  79. Nagy KL, Blum AE, Lasga AC (1991) Dissolution and precipitation kinetics of kaolinite at 80 °C and pH 3: The dependence on solution saturation state. Am J Sci 291: 649–686

    Article  Google Scholar 

  80. Noll W (1934) Hydrothermale Synthese des Kaolins. Mineral Petrogr Mitt, 45: 175–190

    Google Scholar 

  81. Noll W (1936) Synthese von Montmorilloniten. Chem Erde 10: 129–154

    Google Scholar 

  82. Norin E (1953) Occurrence of authigenic illitic mica in the sediments of the central Tyrrhenian Sea. Bull Geol Inst Univ Uppsala 34: 239

    Google Scholar 

  83. Norrish K (1972) Factors in the weathering of mica to vermiculite. In: Serratosa JM (ed) Proc Intern Clay Conf Madrid, 1972. Div Ciencias CSIC, pp 419–432

    Google Scholar 

  84. Oosterwyck-Gastuche MC van, La Iglesia A (1978) Kaolinite synthesis II. Review and discussion of the factors influencing the rate process. Clays Clay Min 26: 409–417

    Article  Google Scholar 

  85. Parham WE (1969) Halloysite-rich tropical weathering products of Hongkong. In: Heller L (ed) Proc Intern Clay Conf Tokyo, Japan, 1969. Israel Universities Press, Jerusalem, pp 403–416

    Google Scholar 

  86. Perry E, Hower I (1970) Burial diagenesis in Gulf coast pelitic sediments. Clays Clay Min 18: 165–177

    Article  Google Scholar 

  87. Perry E, Hower J (1972) Late-stage dehydration in deeply buried pelitic sediments. Bull Am Ass Petrol Geol 56: 2013–2021

    Google Scholar 

  88. Powell TG, Foscolos AE, Gunther PR, Snowden LR (1978) Diagenesis of organic matter and fine clay minerals: a comparative study. Geochim Cosmochim Acta 42: 1181–1197

    Article  Google Scholar 

  89. Rex RW (1965) Authigenic kaolinite and mica as evidence for phase equilibria at low temperatures. Clays Clay Min 13: 95–104

    Article  Google Scholar 

  90. Reynolds RC (1980) Interstratified clay minerals. In: Brindley G W, Brown G (eds) Crystal structures of clay minerals and their X-ray identification. Mineralogical Society London, 249–304

    Google Scholar 

  91. Roberson HE (1974) Early diagenesis: Expansible soil clay-sea water reactions. J Sedim Petrol 44: 441–449

    Google Scholar 

  92. Robert M (1973) The experimental transformation of mica toward smectite; relative importance of total charge and tetrahedral substitution. Clays Clay Min 21: 167–174

    Article  Google Scholar 

  93. Rosenberg PE, Kittrick J A, Sass BM (1985) Implications of illite/smectite stability diagrams: A discussion. Clays Clay Min 33: 561–562

    Article  Google Scholar 

  94. Russel KL (1970) Geochemistry and halmyrolysis of clay minerals, Rio Ameca, Mexico. Geochim Cosmochim Acta 34: 893–907

    Article  Google Scholar 

  95. Sayles FL, Mangelsdorf PC (1977) The equilibration of clay minerals with seawater: exchange reactions. Geochim Cosmochim Acta 41: 951–960

    Article  Google Scholar 

  96. Sayles FL, Mangelsdorf PC (1979) Cation-exchange charactericties of Amazon river suspended sediment and its reaction with seawater. Geochim Cosmochim Acta 43: 767–779

    Article  Google Scholar 

  97. Siffermann G, Millot G (1969) Equatorial and tropical weathering of recent basalts from Cameron: Allophanes, halloysite, metahalloysite, kaolinite and gibbsite. In: Heller L (ed) Proc Intern Clay Conf, Tokyo, Japan, vol I., Isreael Universities Press, Jerusalem, pp 417–430

    Google Scholar 

  98. Siffert B (1962) Quelques réactions de la silice en solution: La formation des argiles. Mém Serv Carte Geol Alsace Lorraine 21, 86

    Google Scholar 

  99. Siffert B, Wey R (1962) Synthèse d’une sepiolite à temperature ordinaire. C R Acad Sci Paris 254: 1460–1463

    Google Scholar 

  100. Singer A (1979) Palygorskite in sediments: Detritical, diagenentic or neoformed. A critical review. Geolog Rundschau 68: 996–1008

    Article  Google Scholar 

  101. Singer A, Müller G (1983) Diagenesis in argillaeaous sediments. In: Larsen G, Chilinger GV (eds) Diagenesis in Sediments and Sedimentary Rocks. Elsevier, Amsterdam

    Google Scholar 

  102. Steefel GI, Capellen P van (1999) A new kinetic approach to modeling water-rock interaction: The role of nucleation, precursors, and Ostwald-ripening. Geochim Cosmochim Acta 54: 2657–2677

    Article  Google Scholar 

  103. Stoessel RK (1979) A regular solution site-mixing model for illites. Geochim Cosmochim Acta 43: 1151–1159

    Article  Google Scholar 

  104. Stoessel RK (1981) Refinements in a site-mixing model for illites: Local electrostatic balance and the quasi-chemical approximation. Geochim Cosmochim Acta 45: 1733–1741

    Article  Google Scholar 

  105. Strese H, Hofmann U (1941) Synthesis of magnesium silicate gels with twodimensionl regular structures. Z Anorg Allgem Chem 247: 65–95

    Article  Google Scholar 

  106. Surdam RC, Crossley LJ (1985) Organic inorganic reactions during progressive burial: key to porosity and permeability enhancement and preservation. Phil Trans Roy Soc London A 315: 135–156

    Article  Google Scholar 

  107. Tazaki K (1986) Observation of primitive clay, presurors during microcline weathering. Contrib Mineral Petrol 92: 86–88

    Article  Google Scholar 

  108. Tazaki K, Fyfe WS, van der Gaast (1989) Growth of clay minerals in natural and synthetic glasses. Clay Clay Min 37: 348–354

    Article  Google Scholar 

  109. Thomassin JH, Crovissier JL, Touray JC, Juteau T, Boutonnat F (1985) L’apport de la géochimie experimentale à la compréhension des interactions eau de mer-verre basaltique entre 3 °C et 90 °C, données de l’analyse ESCA, de la microscopie et de la microdiffraction électronique. Bull Sov Geol France 8: 217–222

    Google Scholar 

  110. Truesdell A H, Christ C L (1968) Cation exchange in clays interpreted by regular solution theory. Am J Sci 266: 402–412

    Article  Google Scholar 

  111. Tsuzuki Y, Kawabe I (1983) Polymorphe transformations of kaolin minerals in aqueous solutions. Geochim Cosmochim Acta 47: 59–66

    Article  Google Scholar 

  112. Veblen DR, Guthrie GD, Livi KJT, Reynolds RC (1990) High-resolution transmission electron microscopy and electron diffraction of mixed-layer illite/smectite: Experimental results. Clays Clay Min 38: 1–13

    Article  Google Scholar 

  113. Velde B (1977) Clays and clay minerals in natural and synthetic systems in: Developments in Sedimentology 21. Elsevier, Amsterdam Oxford New York

    Google Scholar 

  114. Wada SI, Wada K (1979) Synthetic allophane and imogolite. J Soil Sci 30: 347–355

    Article  Google Scholar 

  115. Wada SI, Wada K (1980) Formation, composition and structure of hydroxoaluminiumsilicate ions. J Soil Sci 31: 457–467

    Article  Google Scholar 

  116. Weaver CE, Pollard LD (1973) The chemistry of clay minerals. Elsevier, Amsterdam New York London

    Google Scholar 

  117. Williams LB, Ferrel RE, Chinn EW, Sassen R (1989) Fixed-ammonium in clays associated with crude oils. Appl Geochem 4: 605–616

    Article  Google Scholar 

  118. Williams LB, Ferrel RE (1991) Ammonium substitution in illite during maturation of organic matter. Clays Clay Min 39: 400–408

    Article  Google Scholar 

  119. Wilson MD, Pttmann ED (1977) Authigenic clays in sandstones: Recognition and influence on reservoir properties and paleoenvironmental analysis. J Sediment Petrology 47: 3–31

    Google Scholar 

  120. Wollast R, MacKenzie FT, Bricker OP (1968) Experimental precipitation and genesis of sepiolite at earth surface conditions. Am Min 53: 1645–1662

    Google Scholar 

  121. Yariv S, Cross H (1979) Geochemistry of colloid systems for earth scientists. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  122. Yau Y-C, Peacor DR, Essene EJ, Lee JH, Kuo L-C, Cosca MA (1987) Hydrothermal treatment of smectite, illite and basalt to 460 °C: comparision of natural with hydrothermally formed clay minerals. Clays Clay Min 35: 241–250

    Article  Google Scholar 

  123. Yau Y-C, Peacor DR, Bearre E, Essene EJ, McDowell SD (1988) Microstructures, formation mechanisms and depth-zoning of phyllosilicates in geothermally altered shales, Salton Sea, California. Clays Clay Min 36: 1–10

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Dr. Dietrich Steinkopff Verlag, GmbH & Co. KG Darmstadt

About this chapter

Cite this chapter

Jasmund, K. (1993). Bildung und Umbildung von Tonmineralen. In: Jasmund, K., Lagaly, G. (eds) Tonminerale und Tone. Steinkopff. https://doi.org/10.1007/978-3-642-72488-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72488-6_4

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-0923-8

  • Online ISBN: 978-3-642-72488-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics