Regulation and possible functional implications of G-protein mRNA expression in nonfailing and failing ventricular myocardium

  • T. Eschenhagen
  • U. Mende
  • M. Nose
  • W. Schmitz
  • H. Scholz
  • J. Schulte am Esch
  • R. Sempell
  • A. Warnholtz
  • J.-M. Wüstel


In human end-stage heart failure an increased amount of inhibitory G-protein α-subunits (G) is assumed to play a role in desensitization of the adenylyl cyclase signaling pathway. In the present study, northern blot experiments with 32P-labeled cDNA probes in ventricular tissue samples from explanted human hearts revealed that G2- and G3- mRNA are the predominant G-mRNA subtypes in human ventricles, whereas G1-mRNA was not detectable. The mRNA for the stimulatory G-protein α-subunit (G) consisted of two mRNA sizes. Quantification of mRNA levels revealed a 103 ± 38% increase in Giα–2-mRNA levels in hearts with idiopathic dilative cardiomyopathy (IDC; n = 8), and a 77 ± 25% increase in hearts with ischemic cardiomyopathy (ICM; n = 6) as compared to nonfailing controls (NF, n = 8). In contrast, Giα–3- and G-mRNA levels were similar in failing and nonfailing hearts. To investigate whether or not the increased expression of Giα–2-mRNA might be due to chronically elevated catecholamine levels, we determined the influence of a 4-day infusion of isoprenaline (Iso; 2.4 mg/kg d), propranolol (Prop; 9.9 mg/kg d), Iso + Prop or 0.9% NaCl as control (Ctr) on myocardial G-mRNA and G-protein levels in rats. In Iso-treated rats, hybridization experiments revealed a 49 ± 18% (n = 7) and 27 ± 7% (n = 8) increase in G–2 and Giα–3-mRNA, respectively. Pertussis toxin-catalyzed ADP-ribosylation revealed a 22 ± 7% (n = 8) increase in Giprotein as compared to Ctr (n = 8). These alterations were accompanied by an increased potency for the negative inotropic effect (NIE) of carbachol (mean EC50: 0.04 µM vs. 0.28 µM) in the presence of Iso in isolated electrically driven (1 Hz) papillary muscles. Prop itself had no effect, but it antagonized all Iso-induced effects. We conclude that, in human heart failure due to IDC or ICM, increased G2-, but not Giα–3-mRNA levels accompany the increased amount of G-protein, suggesting that this increase is at least in part due to increased de novo synthesis. The experiments in rats demonstrated that chronic β-adrenergic stimulation leads to an increased expression of G-mRNA and -protein, and to an enhanced potency of the negative inotropic effect of muscarinic agonists. These results support the hypothesis that increased expression of G might play a pathophysiological role in human end-stage heart failure as a process of adaptation to an increased adrenergic drive.

Key words

G-proteins mRNA expression pertussis toxin substrates force of contraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auffray C, Rougeon F (1980) Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor RNA. Eur J Biochem 107: 303–314PubMedCrossRefGoogle Scholar
  2. 2.
    Böhm M, Brückner R, Hackbarth I, Haubitz B, Linhart R, Meyer W, Schmidt B, Schmitz W, Scholz H (1984) Adenosine inhibition of catecholamine-induced increase in force of contraction in guinea-pig atrial and ventricular heart preparations. Evidence against a cyclic AMP- and cyclic GMP-dependent effect. J Pharmacol Exper Ther 230: 483–492Google Scholar
  3. 3.
    Böhm M, Beuckelmann D, Brown L, Feiler G, Lorenz B, Näbauer M, Kemkes B, Erdmann E (1988) Reduction of beta-adrenoceptor density and evaluation of positive inotropic responses in isolated, diseased human myocardium. Eur Heart J 9: 844–852PubMedGoogle Scholar
  4. 4.
    Böhm M, Gierschik P, Jakobs KH, Pieske B, Schnabel P, Ungerer M, Erdmann E (1990) Increase of Gia in human hearts with dilative but not ischemic cardiomyopathy. Circulation 82: 1249–1265PubMedCrossRefGoogle Scholar
  5. 5.
    Böhm M, Larisch K, Erdmann E (1991) Quantification of Gia by a novel radioimmunoassay in cardiomyopathic human hearts. Naunyn Schmiedeberg’s Arch Pharmacol 343 (Suppl): R54Google Scholar
  6. 6.
    Brann MR, Collins RM, Spiegel A (1987) Localization of mRNAs encoding the oe-subunits of signal-transducing G-proteins within rat brain and among peripheral tissues. FEBS Lett 222: 191–198PubMedCrossRefGoogle Scholar
  7. 7.
    Bristow MR, Ginsburg R, Minobe W, Cubiccioti RS, Sageman WS, Lurie K, Billingham ME, Harrison DC, Stinson EB (1982) Decreased catecholamine sensitivity and beta-adrenergic receptor density in failing human hearts. N Engl J Med 307: 205–211PubMedCrossRefGoogle Scholar
  8. 8.
    Bristow MR, Ginsburg R, Strosberg A, Montgomery W, Minobe W (1984) Pharmacology and inotropic potential of forskolin in the human heart. J Clin Invest 74: 212–223PubMedCrossRefGoogle Scholar
  9. 9.
    Bristow MR, Hershberger RE, Port JD, Gilbert EM, Sandoval A, Rasmussen R, Cates AE, Feldman AM (1990) β-adrenergic pathways in nonfailing and failing human ventricular myocardium. Circulation 82 (Suppl I ): 12–25Google Scholar
  10. 10.
    Daly PA, Sole MJ (1990) Myocardial catecholamines and the pathophysiology of heart failure. Circulation 82 (Suppl I): 35–43Google Scholar
  11. 11.
    Eschenhagen T, Mende U, Nose M, Schmitz W, Scholz H, Wüstel JM (1991a) Iso-prenaline-induced increase in mRNA levels of inhibitory G-protein α-subunits in rat heart. Naunyn Schmiedeberg’s Arch Pharmacol 343: 609–615PubMedCrossRefGoogle Scholar
  12. 12.
    Eschenhagen T, Geertz B, Hertie B, Mende U, Memmesheimer C, Pohl A, Schmitz W, Scholz H, Steinfath M (1991b) In vivo treatment with positive and negative inotropic agents differentially affects myocardial β-adrenoceptors, G-protein expression and force of contraction in rats. Naunyn Schmiedeberg’s Arch Pharmacol 344 (Suppl): R 56Google Scholar
  13. 13.
    Feldman AM, Cates AE, Veazey WB, Hershberger RE, Bristow MR, Baughman KL, Baumgartner WA, Van Dop C (1988) Increase in the 40,000-mol wt pertussis toxin substrate ( G-protein) in the failing human heart. J Clin Invest 82: 189–197Google Scholar
  14. 14.
    Feldman AM, Cates AE, Bristow MR, Van Dop C (1989) Altered expression of alpha-subunits of G-proteins in failing human hearts. J Mol Cell Cardiol 21: 359–365PubMedCrossRefGoogle Scholar
  15. 15.
    Feldman MD, Copelas L, Gwathmey JK, Phillips P, Warren SE, Schoen FJ, Grossman W, Morgan JP (1987) Deficient production of cyclic AMP: pharmacologic evidence of an important cause of contractile dysfunction in patients with endstage heart failure. Circulation 75: 331–339PubMedCrossRefGoogle Scholar
  16. 16.
    Freissmuth M, Selzer E, Schütz W (1991) Interactions of purified bovine brain A1 adenosine receptors with G-proteins. Biochem J 275: 651–656PubMedGoogle Scholar
  17. 17.
    Gilman AG (1990) Regulation of adenylyl cyclase by G proteins. The Biology and Medicine of Signal Transduction, ed. by Y. Nishizuka et al., Raven Press, New York: 51–57Google Scholar
  18. 18.
    Hadcock JR, Ros M, Watkins DC, Malbon CC (1990) Cross-regulation between G-protein-mediated pathways. J Biol Chem 265: 14784–14790PubMedGoogle Scholar
  19. 19.
    Hildebrandt JD, Kohnken RE (1990) Hormone inhibition of adenylyl cyclase. J Biol Chem 265: 9825–9830PubMedGoogle Scholar
  20. 20.
    Höppner W, Rasmussen UB, Abuerreish G, Wohlrab H, Seitz HJ (1988) Thyroid hormone effect on gene expression of the adenine nucleotide transporter in different rat tissues. Mol Endocrinol 2: 1127–1131PubMedCrossRefGoogle Scholar
  21. 21.
    Holmer SR, Stevens S, Homey CJ (1989) Tissue- and species-specific expression of inhibitory guanine nucleotide-binding proteins. Circ Res 65: 1136–1140PubMedGoogle Scholar
  22. 22.
    Ishikawa Y, Bianchi C, Nadal-Ginard B, Homey CJ (1990) Alternative promoter and 5’ exon generate a novel GSa mRNA. J Biol Chem 265: 8458–8462PubMedGoogle Scholar
  23. 23.
    Jones DT, Reed RR (1987) Molecular cloning of five GTP-binding protein cDNA species from rat olfactory neuroepithelium. J Biol Chem 262: 14241–14249PubMedGoogle Scholar
  24. 24.
    Katoh Y, Komuro I, Takaku F, Yamaguchi H, Yazaki Y (1990) Messenger RNA levels of guanine nucleotide-binding proteins are reduced in the ventricle of cardiomyopathic hamsters. Circ Res 67: 235–239PubMedGoogle Scholar
  25. 25.
    Kim S, Ang SL, Bloch DB, Bloch KD, Kawahara Y, Tolman C, Lee R, Seidman JG, Neer EJ (1988) Identification of cDNA encoding an additional alpha-subunit of a human GTP- binding protein: Expression of three alphai subtypes in human tissues and cell lines. Proc Natl Acad Sci USA 85: 4153–4157PubMedCrossRefGoogle Scholar
  26. 26.
    Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227: 680–685PubMedCrossRefGoogle Scholar
  27. 27.
    Marquetant R, Bergmaier C, Oehl U, Strasser RH (1991a) Adenosin A1 Rezeptoren transregulieren β1-adrenerge Rezeptoren und G-protein. Zeitschrift für Kardiologie 80 (Suppl 3): 541Google Scholar
  28. 28.
    Marquetant R, Brehm B, Strasser RH (1992) Transregulation of inhibitory receptors of the adenylyl cyclase system after chronic β-blockade. J Mol Cell Cardiol (in press)Google Scholar
  29. 29.
    Mende U, Eschenhagen T, Geertz B, Schmitz W, Scholz H, Schulte am Esch J, Sempell R, Steinfath M (1992) Isoprenaline-induced increase in the 40/41 kDa pertussis toxin substrates and functional consequences on contractile response in rat heart. Naunyn Schmiedebergs Arch Pharmacol 345: 44–50PubMedCrossRefGoogle Scholar
  30. 30.
    Neumann J, Schmitz W, Scholz H, von Meyerinck L, Döring V, Kalmar P (1988) Increase of myocardial Grproteins in human heart failure. Lancet II: 936–937Google Scholar
  31. 31.
    Reithmann C, Gierschik P, Müller U, Werdan K, Jakobs KH (1990) Pseudomonas exotoxin A prevents β-adrenoceptor-induced upregulation of Gi protein α-subunits and adenylate cyclase desensitization in rat heart muscle cells. Mol Pharmacol 37: 631–638PubMedGoogle Scholar
  32. 32.
    Ribeiro-Neto F, Mattera R, Grenet D, Sekura RD, Birnbaumer L, Field JB (1987) Adenosine diphosphate ribosylation of G-proteins by pertussis and cholera toxin in isolated membranes. Different requirements for and effects of guanine nucleotides and Mg2+. Mol Endocrinol 1: 472–481PubMedCrossRefGoogle Scholar
  33. 33.
    Schmitz W, Scholz H, Erdmann E (1987) Effects of alpha- and beta-adrenergic agonists, phosphodiesterase inhibitors and adenosine on isolated human heart muscle preparations. Trends Pharmacol Sci 8: 447–450CrossRefGoogle Scholar
  34. 34.
    Schnabel P, Böhm M, Gierschik P, Jakobs KH, Erdmann E (1990) Improvement of cholera toxin-catalysed ADP-ribosylation by endogenous ADP-ribosylation factor from bovine brain provides evidence for an unchanged amount of GSa in failing human myocardium. J Mol Cell Cardiol 22: 73–82PubMedCrossRefGoogle Scholar
  35. 35.
    Stanton HC, Brenner G, Mayfield ED (1969) Studies on isoproterenol-induced cardiomegaly in rats. Am Heart J 77: 72–80PubMedCrossRefGoogle Scholar
  36. 36.
    Zierhut W, Zimmer HG (1989) Significance of myocardial α- and β-adrenoceptors in catecholamine-induced cardiac hypertrophy. Circ Res 65: 1417–1425PubMedGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co.KG, Darmstadt 1992

Authors and Affiliations

  • T. Eschenhagen
    • 1
    • 2
  • U. Mende
    • 1
  • M. Nose
    • 1
  • W. Schmitz
    • 1
  • H. Scholz
    • 1
  • J. Schulte am Esch
    • 1
  • R. Sempell
    • 1
  • A. Warnholtz
    • 1
  • J.-M. Wüstel
    • 1
  1. 1.Abteilung Allgemeine PharmakologieUniversitäts-Krankenhaus EppendorfGermany
  2. 2.Abteilung Allgemeine PharmakologieUniversitäts-Krankenhaus EppendorfGermany

Personalised recommendations