Quantification of Giα-proteins in the failing and nonfailing human myocardium

  • M. Böhm
  • P. Gierschik
  • E. Erdmann


Heterotrimeric Gi-proteins play an important role in the regulation of cardiac adenylate cyclase. Besides a downregulation of β-adrenoceptors with an accompanying reduction of the positive inotropic effects of cAMP-dependent positive inotropic agents, an increase of pertussis toxin substrates (G-proteins) has been observed. The increase of G has been reported to be associated with a reduced adenylate cyclase activity in dilated cardiomyopathy from hearts with heart failure class NYHA IV. Since the quantification of G-proteins with the pertussis toxin labeling method is hampered by a number of biological and technical factors, G-proteins were quantified radioimmunologically using the iodinated C-terminus 125I-KENLKDCGLF as tracer, purified retinal transducin α as standard, and an antiserum (DS 4) raised against the same peptide. With this technique G-proteins were increased by 118% in dilated cardiomyopathy and 48% in ischemic cardiomyopathy, although pertussis toxin substrates were only increased by 40% in dilated cardiomyopathy and no change was observed in ischemic cardiomyopathy. In cardiomyopathy tissue, an inverse relationship was observed between the increase of G and the positive inotropic effects of isoprenaline or milrinone. These data provide evidence for a functional role of G in the reduced positive inotropic effects of cAMP-dependent positive inotropic agents. In addition, results obtained with pertussis toxin labeling for quantification of G-proteins do not necessarily reflect the expression of G-proteins in the human myocardium.

Key words

Heterotrimeric Gi-proteins adenylate cyclase cardiomyopathy, dilated cardiomyopathy, ischemic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Böhm M, Beuckelmann D, Brown L, Feiler G, Lorenz B, Näbauer M, Kemkes B, Erdmann E (1988) Reduction of beta-adrenoceptor density and evaluation of positive inotropic responses in isolated, diseased human myocardium. Eur Heart J 9: 844–852PubMedGoogle Scholar
  2. 2.
    Böhm, Gierschik P, Jakobs KH, Pieske B, Schnabel P, Ungerer M, Erdmann E (1990) Increase of Giα in human hearts with dilated but not ischemic cardiomyopathy. Circulation 82: 1249–1265PubMedCrossRefGoogle Scholar
  3. 3.
    Böhm M, Larisch K, Erdmann E, Camps M, Jakobs KH, Gierschik P (1991) Failure of (32P)-ADP-ribosylation by pertussis toxin to determine Gia content in membranes from various human tissues. Improved radioimmunological quantification using the 125I- labeled C-terminal decapeptide of retinal transducin. Biochem J 277: 223–229PubMedGoogle Scholar
  4. 3a.
    Böhm M, Gierschik P, Larisch K, Erdmann E (1991) Radioimmunochemical quantification of Gia in atria and ventricles from cardiomyopathic human hearts. Circ Res (submitted)Google Scholar
  5. 4.
    Bolton AE, Hunter WN (1973) The labeling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Biochem J 133: 529–539PubMedGoogle Scholar
  6. 5.
    Bray P, Carter A, Guo Y, Puckett C, Kamholz J, Spiegel A, Nirenberg M (1987) Human cDNA clones for an a subunit of G; signal-transduction protein. Proc Natl Acad Sci USA 84:5115– 5119Google Scholar
  7. 6.
    Bristow MR, Ginsburg R, Minobe W, Cubiciotti RS, Sageman WS, Lurie K, Billingham ME, Harrison DC, Stinson EB (1982) Decreased catecholamine sensitivity and beta- adrenergic-receptor density in failing human hearts. N Engl J Med 307 205–211PubMedCrossRefGoogle Scholar
  8. 7.
    Bristow MR, Ginsburg R, Umans V, Fowler MR, Minobe W, Rasmussen R, Zera P, Menlove R, Shah P, Jamieson S, Stinson SB (1986) β1 and β2-Adrenergic receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor down-regulation in heart failure. Circ Res 59: 297–309Google Scholar
  9. 8.
    Bristow MR, Kantrowitz NE, Ginsburg R, Fowler MR (1985) Beta-adrenergic function in heart muscle disease and heart failure. J Mol Cell Cardiol 17 (Suppl 2): 41–52PubMedCrossRefGoogle Scholar
  10. 9.
    Bristow MR, Skerl L, Jackson DG, Larrabee P, Feldman AM (1990) Uncoupling of β-adrenergic receptors and increased Gi in ischemic dilated cardiomyopathy. Circulation 82 (Suppl 4): III–567Google Scholar
  11. 10.
    Brodde OE, Zerkowski HR, Borst HG, Maier W, Michel MC (1989) Drug- and disease-induced changes of human cardiac β1 and β2-adrenoceptors. Eur Heart J 10 (Suppl B): 38–44PubMedGoogle Scholar
  12. 11.
    Burns DL, Manclark CR (1985) Adenine nucleotides promote dissociation of pertussis toxin subunits. J Biol Chem 261:4324– 4327Google Scholar
  13. 12.
    Chidsey CA, Harrison DC, Braunwald E (1962) Augmentation of the plasma noradrenaline response to exercise in patients with congestive heart failure. N Engl J Med 267: 650–638PubMedCrossRefGoogle Scholar
  14. 13.
    Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, Simon AB, Rector T (1984) Plasma noradrenaline as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 311: 819–823PubMedCrossRefGoogle Scholar
  15. 14.
    Feldman AM, Cates AE, Veazey WB, Hershberger RE, Bristow MR, Baughman KLGoogle Scholar
  16. Baumgartner WA, Van Dop C (1988) Increase of the 40,000-mol wt pertussis toxin substrate ( G protein) in the failing human heart. J Clin Invest 82: 189–197Google Scholar
  17. 15.
    Feldman AM, Jackson DG, Bristow MR, Van Dop C (1989) Immunologic quantification of G proteins in failing and nonfailing human heart. Circulation 80 (Suppl): II–293Google Scholar
  18. 16.
    Feldman MD, Copelas L, Gwathmey JK, Phillips P, Warren SE, Schoen FJ, Grossman W, Morgan JP: Deficient production of cyclic AMP (1987) pharmacologic evidence of an important cause of contractile dysfunction in patients with end-stage heart failure. Circulation 75: 331–339Google Scholar
  19. 17.
    Fowler MB, Laser JA, Hopkins GL, Minobe W, Bristow MR (1986) Assessment of the β- adrenergic receptor pathway in the intact failing human heart: progressive receptor down-regulation and subsensitivity to agonist response. Circulation 74: 1290–1302PubMedCrossRefGoogle Scholar
  20. 18.
    Gilman AG (1987) G proteins: Transducers of receptor-generated signals. Ann Rev Biochem 56: 615–649PubMedCrossRefGoogle Scholar
  21. 19.
    Goldsmith P, Gierschik P, Milligan G, Unson CG, Vinitsky R, Malech HL, Spiegel AM (1987) Antibodies directed against synthetic peptides distinguish between GTP-binding proteins in neutrophils and brain. J Biol Chem 262: 14683–14688PubMedGoogle Scholar
  22. 20.
    Hara-Yokoyama M, Furuyama S (1988) Endogenous inhibitor of the ADP-ribosylation of (a) G-protein(s) as catalyzed by pertussis toxin is present in rat liver. FEBS Lett 234: 27–30PubMedCrossRefGoogle Scholar
  23. 21.
    Hausman SZ, Manclark CR, Burns DL (1990) Binding of ATP by pertussis toxin and isolated toxin subunits. Biochemistry 29: 6128–6131PubMedCrossRefGoogle Scholar
  24. Hershberger RE, Feldman AM, Bristow MR (1991) A1 Adenosine receptor inhibition of adenylate cyclase in failing and nonfailing human ventricular myocardium. Circulation 83: 1343–1351Google Scholar
  25. 23.
    Imagawa M, Chiu R, Karin M (1987) Transcription factor AP-2 mediates induction of two different signal-transduction pathways: protein kinase C and cAMP. Cell 51: 251–260PubMedCrossRefGoogle Scholar
  26. 24.
    Lim LK, Sekura RD, Kaslow HR (1985) Adenine nucleotides directly stimulate pertussis toxin. J Biol Chem 260: 2585–2588PubMedGoogle Scholar
  27. 25.
    Linder ME, Pang IH, Duronio RJ, Gordon JI, Sternweiss PC, Gilman AG (1991) Lipid modifications of G protein subunits. Myristolation of Goα increases its affinity for βγ. J Biol Chem 266: 4654–4659Google Scholar
  28. 26.
    Longabaugh JP, Vatner DE, Graham RM, Homcy CJ (1986) NADP improves the efficiency of cholera toxin catalyzed ADP-ribosylation in liver and heart membranes. Biochem Biophys Res Commun 137: 328–333PubMedCrossRefGoogle Scholar
  29. 27.
    Mende U, Geertz B, Scholz H, Schulte am Esch J, Sempell R (1991) Time course of the effect of isoprenaline on the inhibitory G-protein α-subunit in the heart. Naunyn Schmiedeberg’s Arch Pharmacol 343 (Suppl): R54Google Scholar
  30. 28.
    Milligan G (1988) Techniques used in the identification and analysis of function of pertussis toxin-sensitive guanine nucleotide binding proteins. Biochem J 255: 1–13PubMedGoogle Scholar
  31. 29.
    Neer EJ, Lok JM, Wolf LG (1984) Purification and properties of the inhibitory guanine nucleotide regulatory unit of brain adenylate cyclase. J Biol Chem 259: 14222–14229PubMedGoogle Scholar
  32. 30.
    Neumann J, Scholz H, Döring V, Schmitz W, v. Meyerinck L, Kalmar P (1988) Increase in myocardial Grproteins in heart failure. Lancet II: 936–937Google Scholar
  33. 31.
    Ohguro H, Fukada Y, Yoshizawa T, Saito T, Akino T (1990) A specific βγ-subunit of transducin stimulates ADP-ribosylation of the a-subunit by pertussis toxin. Biochem Biophys Res Commun 167: 1235–1241PubMedCrossRefGoogle Scholar
  34. 32.
    Packer M (1988) Neurohormonal interactions and adaptations in congestive heart failure. Circulation 77: 721–730PubMedCrossRefGoogle Scholar
  35. 33.
    Pines M, Gierschik P, Milligan G, Klee W, Spiegel A (1985) Antibodies against the carboxyl-terminal 5-kDa peptide of the α-subunit of transducin crossreact with the 40- kDa but not the 39-kDa guanine nucleotide binding protein from brain. Proc Natl Acad Sci USA 82: 4095–4099PubMedCrossRefGoogle Scholar
  36. 34.
    Reithmann C, Gierschik P, Müller U, Werdan K, Jakobs KH (1990) Pseudomonas exotoxin A prevents β-adrenoeeptor-indueed up-regulation of Gi protein a-subunits and adenylyl cyclase desensitization in rat heart muscle cells. Mol Pharmocol 37: 631–638Google Scholar
  37. 35.
    Ribeiro-Neto F, Mattera R, Grenet D, Sekura RD, Birnbaumer L, Field JB (1987) Adenosine disphosphate ribosylation of G proteins by pertussis and cholera toxin in isolated membranes. Different requirement for and effects of guanine nucleotides and Mg2+. Mol Endocrinol 1: 472–481PubMedCrossRefGoogle Scholar
  38. 36.
    Ribeiro-Neto F, Mattera R, Grenet D, Sekura RD, Birnbaumer L, Field JB (1987) Adenosine disphosphate ribosylation of G proteins by pertussis and cholera toxin in isolated membranes. Different requirements for and effects of guanine nucleotides and Mg2+. Mol Endocrinol 1: 472–481PubMedCrossRefGoogle Scholar
  39. 37.
    Ribeiro-Neto F, Mattera R, Hildebrandt JD, Codina J, Field JB, Birnbaumer L, Sekura RD (1985) ADP-ribosylation of membrane components by pertussis and cholera toxin. Meth Enzymol 109:566– 582Google Scholar
  40. 38.
    Schnabel P, Bohm M, Gierschik P, Jakobs KH, Erdmann E (1990) Improvement of cholera toxin-catalyzed ADP-ribosylation by endogenous ADP-ribosylation factor from bovine brain provides evidence for an unchanged amount of Gsa in failing human myocardium. J Mol Cell Cardiol 22: 73–82PubMedCrossRefGoogle Scholar
  41. 39.
    Sibley DR, Lefkowitz RJ (1985) Molecular mechanisms of receptor desensitization using the beta-adrenergic receptor-coupled adenylate cyclase system as a model. Nature 317: 124–129PubMedCrossRefGoogle Scholar
  42. 40.
    Tanuma S, Endo H (1990) Identification in human erythrocytes of mono(ADP-ribosyl)protein hydrolase that cleaves a mono (ADP-ribosyl) Gi linkage. FEBS Lett 261: 381–384PubMedCrossRefGoogle Scholar
  43. 41.
    Tanuma S, Kawashima K, Endo H (1988) Eukaryotic mono(ADP-ribosyl)transferase that ADP-ribosylates GTP-binding regulatory Giα protein. J Biol Chem 263: 5485–5489PubMedGoogle Scholar
  44. 42.
    Thomas J A, Marks BH (1987) Plasma noradrenaline in congestive heart failure. Am J Cardiol 41: 233–243CrossRefGoogle Scholar
  45. 43.
    Tsai SC, Adamik R, Kanaho Y, Hewlett EL, Moss J (1984) Effects of guanyl nucleotides and rhodopsin on ADP-ribosylation of the inhibitory GTP-binding component of adenylate cyclase by pertussis toxin. J Biol Chem 259: 15320–15323PubMedGoogle Scholar
  46. 44.
    Watanabe Y, Imaizumi T, Misaki N, Iwankura K, Yoshiba H (1988) Effects of phosphorylation of inhibitory GTP-binding protein by cyclic AMP-dependent protein kinase on its ADP-ribosylation by pertussis toxin, islet activating protein. FEBS Lett 236 (2): 372–374PubMedCrossRefGoogle Scholar
  47. 45.
    Weinstein LA, Spiegel AM, Carter AD (1988) Cloning and characterization of the human gene for the a-subunit of Gi2, a GTP-binding signal transducin protein. FEBS Lett 232: 333–340PubMedCrossRefGoogle Scholar
  48. 46.
    West RE jr, Moss J, Vaughan M, Liu T, Liu TY (1985) Pertussis toxin-catalyzed ADP-ribosylation of transducin. Cysteine 347 is the ADP-ribose acceptor site. J Biol Chem 260: 14428–14430Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co.KG, Darmstadt 1992

Authors and Affiliations

  • M. Böhm
    • 1
    • 2
  • P. Gierschik
    • 1
  • E. Erdmann
    • 1
  1. 1.Medizinische Klinik IUniversität MünchenGermany
  2. 2.Medizinische Klinik IUniversität München Klinikum GroβhadernMünchen 70Germany

Personalised recommendations