Reperfusion des ischämischen Myokards — Schutz oder Schaden?

  • Wolfgang Schaper
  • Robert J. Schott
  • Masao Kobayashi
Conference paper

Zusammenfassung

Gegen Ende der 60er Jahre, als die Bedrohung durch die koronare Herzerkrankung zu politischem Handeln zwang, schrieb das National Heart and Lung Institute der USA ein besonderes Programm zur Förderung von Forschungsprojekten aus, die sich direkt mit der experimentellen Therapie experimenteller Infarkte befaßten [6]. Es wurden aber auch Programme gefördert, die sich mit Methodenentwicklungen und geeigneten Tiermodellen beschäftigten. Viele neue wie schon bekannte Pharmaka, Naturstoffe und physikalische Methoden wurden einem empirischen Screening mit relativ einfachen Methoden unterzogen, mit dem Ziel der Hemmung der Infarktausbreitung nach akutem Koronarverschluß. Von den oft nicht besonders gut reproduzierbaren Resultaten blieb eigentlich als Goldstandard nur die rechtzeitige Reperfusion übrig. Der optimale Erfolg der Reperfusion, wie unsere Experimente zeigten [42, 46, 47], war abhängig von drei Faktoren:
  • von der Zeit, die seit dem Koronarverschluß vergangen war

  • vom O2-Verbrauch des Myokards vor und während des Koronarverschlusses (hoher MVO2 erfordert frühere Reperfusion) und

  • von der Kollateraldurchblutung (niedrige Kollateraldurchblutung erfordert frühere Reperfusion).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Ames BN, Cather R, Schiers E, Hochstein P (1981) Uric acid provides an antioxidant defense in humans against oxidant-and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci USA 78: 6858–6862PubMedCrossRefGoogle Scholar
  2. 2.
    Bretschneider HJ (1972) Die haemodynamischen Determinanten des myokardialen Sauerstoffverbrauchs. In: Dengler HJ (Hrsg) Die therapeutische Anwendung beta-sympathikolytischer Stoffe. Schattauer, Stuttgart New York, pp 45–60Google Scholar
  3. 3.
    Buchwald A, Fischer M, Winkler B, Schaper W (1986) Austausch von anorganischem Phosphat (PA) im Herzen. Z Kardiol 75 (Suppl 1 ): 23 (abstr.)Google Scholar
  4. 4.
    Buchwald A, Klein HH, Lindert S, Oberschmidt R, Pich S, Nebendahl K, Kreuzer H (1988) Verhindert intracoronare Superoxiddismutase die Entwicklung der postischämischen myokardialen Kontraktionsstörung? Z Kardiol 77 (Suppl 1 ): 84 (abstr.)Google Scholar
  5. 5.
    Eddy LJ, Stewart JR, Jones HP, Engerson TD, McCord JM, Downey JM (1987) Free radical-producing enzyme, xanthine oxidase, is undetectable in human hearts. Am J Physiol 253: H709 — H711PubMedGoogle Scholar
  6. 6.
    Frommer PL (1968) The myocardial infarction research program of the National Heart Institute. Am J Cardiol 22: 108–110PubMedCrossRefGoogle Scholar
  7. 7.
    Geft IL, Fishbein MC, Ninomiya K, Hashida J, Chaux E, Yano J, Y-Rit J, Genov T, Shell W, Ganz W (1982) Intermittent brief periods of ischemia have a cumulative effect and may cause myocardial necrosis. Circulation 66: 1150–1153PubMedCrossRefGoogle Scholar
  8. 8.
    Glower DD, Schaper J, Kabas JS, Hoffmeister HM, Schaper W, Spratt JA, Davis JW, Rankin JS (1987) Relation between reversal of diastolic creep and recovery of systolic function after ischemic myocardial injury in conscious dogs. Circ Res 60: 850–860PubMedGoogle Scholar
  9. 9.
    Gotsman MS, Lotan C, Weiss AT, Appelbaum D, Sapoznikov D, Hasin Y, Mosseri M (1989) Early and prehospital thrombolytic therapy in acute myocardial infarction. In: Schmutzler H, Rutsch W, Dougherty FC (eds) Limitation of Infarct Size. Springer, Berlin Heidelberg New York Tokyo, pp 107–130CrossRefGoogle Scholar
  10. 10.
    Greenfield RA, Swain JL (1984) Dissociation of creatine kinase from the myofibril: disruption of the creatine phosphate shuttle as a potential mechanism for post-ischemic dysfunction. Circulation (Suppl II):II-82 (abstr.)Google Scholar
  11. 11.
    Heyndrickx GR, Baig H, Nellens P, Leusen I, Fishbein MC, Vatner SF (1978) Depression of regional blood flow and wall thickening after brief coronary occlusions. Am J Physiol 234: H653 — H659PubMedGoogle Scholar
  12. 12.
    Hoffmeister HM, Mauser M, Sass S, Schaper J, Schaper W (1984) Ninety minutes of coronary occlusion: prevention of infarcts by short intermittent reperfusion. Circulation 68 (Suppl II):II-261 (abstr.)Google Scholar
  13. 13.
    Hoffmeister HM, Mauser M, Schaper W (1985) Effect of adenosine and AICAR on ATP content and regional contractile function in reperfused canine myocardium. Basic Res Cardiol 80:445 —458PubMedCrossRefGoogle Scholar
  14. 14.
    Hofmann M, Hofmann M, Genth K, Schaper W (1980) The influence of reperfusion on infarct size after experimental coronary artery occlusion. Basic Res Cardiol 75: 572–582PubMedCrossRefGoogle Scholar
  15. 15.
    Kammermeier H, Schmidt P, Juengling E (1982) Free energy change of ATP-hydrolysis: a causal factor of early hypoxic failure of the myocardium. J Mol Cell Cardiol 14: 267–277PubMedCrossRefGoogle Scholar
  16. 16.
    Klein HH, Pich S, Lindert S, Nebendahl K, Niedmann P, Kreuzer H (1989) Protektive Wirkung einer Kombinationsbehandlung mit den Vitaminen E and C beim experimentellen Myokardinfarkt. Z Kardiol 78 (Suppl 1 ): 136 (abstr.)Google Scholar
  17. 17.
    Kloner RA, Braunwald E (1980) Observations on experimental myocardial ischaemia. Cardiovasc Res 14: 371–395PubMedCrossRefGoogle Scholar
  18. 18.
    Krause S, Hess ML (1984) Characterization of cardiac sarcoplasmic reticulum dysfunction during short-term normothermic, global ischemia. Circ Res 55: 176–184PubMedGoogle Scholar
  19. 19.
    Lucchesi BR, Mullane KM (1986) Leukocytes and ischemia-induced myocardial injury. Ann Rev Pharmacol Toxicol 26: 201–224CrossRefGoogle Scholar
  20. 20.
    Lucchesi BR, Romson JL, Jolly SR (1984) Do leukocytes influence infarct size? In: Hearse DJ, Yellon DM (eds) Therapeutic Approaches to Myocardial Infarct Size Limitation. Raven Press, New York, pp 219–248Google Scholar
  21. 21.
    Mauser M, Hoffmeister HM, Nienaber C, Schaper W (1985) Influence of ribose, adenosine, and “AICAR” on the rate of myocardial adenosine triphosphate synthesis during reperfusion after coronary artery occlusion in the dog. Circ Res 56: 220–230PubMedGoogle Scholar
  22. 22.
    Mehta HB, Popovich BK, Dillmann WH (1988) Ischemia induces changes in the level of mRNAs coding for stress protein 71 and creatine kinase M. Circ Res 63: 512–517PubMedGoogle Scholar
  23. 23.
    Murry CE, Richard VJ, Jennings RB, Reimer KA (1988) Preconditioning with ischemia: is the protective effect mediated by free radical-induced myocardial stunning? Circulation 78 (Suppl II):II-77 (abstr.)Google Scholar
  24. 24.
    Muxfeldt M, Schaper W (1987) The activity of xanthine oxidase in heart of pigs, guinea pigs, rabbits, rats, and humans. Basic Res Cardiol 82: 486–492PubMedCrossRefGoogle Scholar
  25. 25.
    Myers CL, Weiss SJ, Kirsh MM, Shlafer M (1985) Involvement of hydrogen peroxide and hydroxyl radical in the oxygen paradox: reduction of creatine kinase release by catalase, allopurinol or deferoxamine, but not by superoxide dismutase. J Mol Cell Cardiol 17: 675–684PubMedCrossRefGoogle Scholar
  26. 26.
    Neely JR, Grotyohann LW (1984) Role of glycolytic products in damage to ischemic myocardium. Dissociation of adenosine triphosphate levels and recovery of function of reperfused ischemic hearts. Circ Res 55: 816–824PubMedGoogle Scholar
  27. 27.
    Neubauer S, Hamman BL, Perry SB, Bittl JA, Ingwall JS (1988) Velocity of the creatine kinase reaction decreases in postischemic myocardium: a 31P-NMR magnetization transfer study of the isolated ferret heart. Circ Res 63: 1–15PubMedGoogle Scholar
  28. 28.
    Panel Discussion (1987) Reperfusion injury. 60th Sessions of the American Heart Association, Anaheim, USA, November 1987Google Scholar
  29. 29.
    Podzuweit T, Beck H, Müller A, Görlach G, Scheld HH (1988) Absence of xanthine oxidase activity in the human myocardium. J Mol Cell Cardiol 20 (Suppl V ): 131 (abstr.)Google Scholar
  30. 30.
    Podzuweit T, Braun W, Müller A, Schaper W (1987) Arrhythmias and infarction in the ischemic pig heart are not mediated by xanthine oxidase-derived free oxygen radicals. Basic Res Cardiol 82: 493–505PubMedCrossRefGoogle Scholar
  31. 31.
    Przyklenk K, Kloner RA (1986) Superoxide dismutase plus catalase improve contractile function in the canine model of the “stunned myocardium”. Circ Res 58: 148–156PubMedGoogle Scholar
  32. 32.
    Reimer KA, Hill ML, Jennings RB (1981) Prolonged depletion of ATP and of the adenine nucleotide pool due to delayed resynthesis of adenine nucleotides following reversible myocardial ischemic injury in dogs. J Mol Cell Cardiol 13: 229–239PubMedCrossRefGoogle Scholar
  33. 33.
    Reimer KA, Jennings RB (1988) Reperfusion injury. In: Schettler G, Jennings RB, Rapaport E, Wenger NK, Bernhardt R (eds) Reperfusion and Revascularization in Acute Myocardial Infarction. Springer, Heidelberg New York Tokyo, pp 52–55Google Scholar
  34. 34.
    Reimer KA, Jennings RB, Cobb FR (1985) Animal models for protecting ischemic myocardium: results of the NIHBL cooperative study: comparison of unconscious and conscious dog models. Circ Res 56: 651–665PubMedGoogle Scholar
  35. 35.
    Richard V, Brooks SE, Jennings RB, Reimer KA (1989) Myocardial neutrophil accumulation during ischemia and reperfusion in dogs: effect of a residual coronary stenosis. J Mol Cell Cardiol 21 (Suppl I V ): P82 (abstr.)Google Scholar
  36. 36.
    Romson JL, Bruce GH, Kunkel SL, Abrams GD, Schork MA, Lucchesi BR (1983) Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog. Circulation 67: 1016–1023PubMedCrossRefGoogle Scholar
  37. 37.
    Romson JL, Jolly SR, Lucchesi BR (1984) Protection of ischemic myocardium by pharmacologic manipulation of leukocyte function. Cardiovasc Rev Reports 5: 960–709Google Scholar
  38. 38.
    Rooke GA, Feigl EO (1982) Work as a correlate of canine left ventricular oxygen consumption, and the problem of catecholamine oxygen wasting. Circ Res 50: 273–286PubMedGoogle Scholar
  39. 39.
    Schaper J (1979) Ultrastructure of the myocardium in acute ischemia. In: Schaper W (ed) The Pathophysiology of Myocardial Perfusion. Elsevier, Amsterdam, New York, Oxford, pp 581–673Google Scholar
  40. 40.
    Schaper J, Schaper W (1983) Reperfusion of ischemic myocardium: ultrastructural and histochemical aspects. J Am Coll Cardiol 1: 1037–1046PubMedCrossRefGoogle Scholar
  41. 41.
    Schaper J, Schwarz F, Kittstein H, Staemmler G, Winkler B, Scheld H, Hehrlein F (1982) The effects of global ischemia and reperfusion on human myocardium: Quantitative evaluation by electron microscopic morphometry. Ann Thorac Surg 33: 116–122PubMedCrossRefGoogle Scholar
  42. 42.
    Schaper W (1978) Experimental coronary artery occlusion. III. The determinants of collateral blood flow in acute coronary occlusion. Basic Res Cardiol 73: 584–594PubMedCrossRefGoogle Scholar
  43. 43.
    Schaper W (1989) Nicht publiziert.Google Scholar
  44. 44.
    Schaper W (1984) Experimental infarcts and the microcirculation. In: Hearse DJ, Yellon DM (eds) Therapeutic Approaches to Myocardial Infarct Size Limitation. Raven Press, New York, pp 79–90Google Scholar
  45. 45.
    Schaper W, Buchwald A, Hoffmeister HM, Ito BR (1985) “Stunned” myocardium is a problem of energy utilization and not of energy supply. Circulation 72 (Suppl III):-119 (abstr.)Google Scholar
  46. 46.
    Schaper W, Frenzel H, Hort W, Winkler B (1979) Experimental coronary artery occlusion. II. Spatial and temporal evolution of infarcts in the dog heart. Basic Res Cardiol 74: 233–239PubMedCrossRefGoogle Scholar
  47. 47.
    Schaper W, Frenzel H, Hort W (1979) Experimental coronary artery occlusion. I. Measurement of infarct size. Basic Res Cardiol 74: -53PubMedCrossRefGoogle Scholar
  48. 48.
    Schaper W, Ito BR (1988) The energetics of “stunned” myocardium. In: de Jong JW (ed) Myocardial Energy Metabolism. Martinus Nijoff Publishers, Dordrecht Boston Lancaster, pp 203–213CrossRefGoogle Scholar
  49. 49.
    Schott RJ, Nao BS, McClanahan TB, Simpson PJ, Stirling MC, Todd RF, Gallagher KP (1989) F (ab’)2 fragments of anti-Mo 1 (904) monoclonal antibodies do not prevent myocardial stunning. Cire Res 65: 1112–1124Google Scholar
  50. 50.
    Sies H (ed) (1985) Oxidative Stress. Academic Press, London Orlando San Diego New York Toronto Montreal Sydney TokyoGoogle Scholar
  51. 51.
    Simoons ML, Serruys PW, Brand M, Bär F, de Zwaan C, Res J, Verheugt F, Krauss H, Remme W, Vermeer F, Lubsen J (1986) Early thrombolysis in acute myocardial infarction (MI): reduction of infarct size, preservation of left ventricular function and improved survival. J Am Coll Cardiol 7: 18A (abstr.)Google Scholar
  52. 52.
    Swain JL, Sabina RL, Hines JJ, Greenfield Jr JC, Holmes EW (1984) Repetitive episodes of brief ischaemia (12 min) do not produce a cumulative depletion of high energy phosphate compounds. Cardiovasc Res 18: 264–269PubMedCrossRefGoogle Scholar
  53. 53.
    Zimmer HG, Trendelenburg C, Kammermeier H, Gerlach E (1973) De-novo-synthesis of myocardial adenine nucleotides in the rat. Acceleration during recovery from oxygen deficiency. Circ Res 32: 635–642PubMedGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag, GmbH & Co. KG, Darmstadt 1990

Authors and Affiliations

  • Wolfgang Schaper
    • 1
  • Robert J. Schott
    • 1
  • Masao Kobayashi
    • 1
  1. 1.Abteilung für experimentelle KardiologieMax-Planck-InstitutBad NauheimDeutschland

Personalised recommendations