Skip to main content

Digitalis receptors affinity labelling and relation with positive inotropic and cardiotoxic effects

  • Conference paper
Book cover Cardiac Glycoside Receptors and Positive Inotropy
  • 59 Accesses

Summary

Affinity labelling of the digitalis receptor has indicated that it is situated on the N-terminal part of the a-subunit of the (Na+,K+)ATPase.

Biochemical and pharmacological properties of the (Na+,K+)ATPase studied on intact chick embryonic hearts and under heart cell culture conditions have indicated the existence of two families of ouabain binding sites i.e.: a low affinity binding sites with a dissociation constant (Kd) of 2–6 μM for the ouabain- receptor complex and a high affinity binding site with a Kd of 26–48 nM. High and low affinity sites also are present at all embryonic stages studied. Inhibition of 86Rb+ uptake in cultured cardiac cells and increase in intracellular Na+ concentration, due to (Na+,K+)ATPase blockade, occur in an ouabain concentration range corresponding to the saturation of the low affinity ouabain site. Ouabain stimulated 45Ca2+ uptake increases in parallel with the increase in the intracellular Na+ concentration. It is suppressed in Na+ free medium or when Na+ is replaced by Li+ suggesting that the increase is due to the indirect activation of the Na+/Ca2+ exchange system in the plasma membrane. Dose-response curves for the inotropic effects of ouabain on papillary muscle and on ventricular cells in culture indicate the development of the cardiotonic properties is parallel to the saturation of the low affinity binding site for ouabain. Therefore, inhibition of the cardiac (Na+,K+) ATPase corresponding to low affinity ouabain binding sites seems to be responsible for both the cardiotonic and cardiotoxic effects of the drug.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. KuD, Akera T, Pew CL, Brody TM (1974) Naunyn-Schmiedeberg’s Arch Pharmacol 285: 185 - 200

    Article  Google Scholar 

  2. Reuter H (1974) Circ Res 34: 599–605

    Article  PubMed  Google Scholar 

  3. Schwartz A, Lindenmayer GE, Allen JC (1975) Pharmacol Rev 27: 3–134

    CAS  PubMed  Google Scholar 

  4. Akera T, Brody TM (1977) Pharmacol Rev 29: 187–220

    CAS  PubMed  Google Scholar 

  5. Gelbart A, Goldman RH (1977) Biochim Biophys Acta 481: 689–694

    Article  CAS  PubMed  Google Scholar 

  6. Allen DG, Blinks JR (1978) Nature 273: 509–513

    Article  CAS  PubMed  Google Scholar 

  7. Weingart R, Kass RS, Tsien RW (1978) Nature 273: 389–301

    Article  CAS  PubMed  Google Scholar 

  8. Wood JM, Schwartz A (1978) J Mol Cell Cardiol 10: 137–144

    Article  CAS  PubMed  Google Scholar 

  9. Biedert S, Barry WH, Smith TW (1979) J Gen Physiol 74: 479–494

    Article  CAS  PubMed  Google Scholar 

  10. Noble D (1980) Cardiovas Res 14: 495–514

    Article  CAS  Google Scholar 

  11. Langer GA (1981) Biochem Pharmacol 30: 3261–3264

    Article  CAS  PubMed  Google Scholar 

  12. Cohen CJ, Fozzard HA, Sheu SS (1982) Circ Res 50: 651–662

    Article  CAS  PubMed  Google Scholar 

  13. Eisner DA, Lederer WJ (1982) Proc R Soc B 214:249–262

    Google Scholar 

  14. Sheu SS, Fozzard HA (1982) J Gen Physiol 80: 325–351

    Article  CAS  PubMed  Google Scholar 

  15. Marban E, Tsien RW (1982) J Physiol 329: 589–614

    CAS  PubMed  Google Scholar 

  16. Okita GT, Ten Eick RE, Richardson F (1974) Ann N Y Acad Sei 242: 658–670

    Article  CAS  Google Scholar 

  17. Godfraind T, Ghysel-Burton J (1977) Nature 265: 165–166

    Article  CAS  PubMed  Google Scholar 

  18. Okita GT (1977) Fed Proc 36: 1115–2230

    Google Scholar 

  19. Michael L, Pitts BJR, Schwartz A (1978) Science 200: 1287–1289

    Article  CAS  PubMed  Google Scholar 

  20. Godfraind T, Ghysel-Burton J (1980) Proc Natl Acad Sei 77: 3067–3069

    Article  CAS  Google Scholar 

  21. Rhee HM, Dutta S, Marks BH (1976) Eur J Pharmacol 37: 141–153

    Article  CAS  PubMed  Google Scholar 

  22. Rhee HM, Huang WH, Askari A (1981) Eur J Pharmacol 70: 273–278

    Article  CAS  PubMed  Google Scholar 

  23. Taniguchi K, Iida S (1972) Biophys Acta 288: 98–102

    CAS  Google Scholar 

  24. Inagaki C, Lindenmayer GE, Schwartz A (1974) J Biol Chem 249: 5135–5140

    CAS  PubMed  Google Scholar 

  25. Hansen O (1976) Biochim Biophys Acta 433: 383–392

    Article  CAS  Google Scholar 

  26. Choi YR, Akera T (1977) Biochim Biophys Acta 481: 648–659

    Article  CAS  PubMed  Google Scholar 

  27. Fricke U, Klaus W (1977) Br J Pharmacol 61: 423–428

    Article  CAS  PubMed  Google Scholar 

  28. Van Alstyne E, Bartschat DK, Poe SL and Lindenmayer GE: Fed Proc 37: 779

    Google Scholar 

  29. De Pover A, Godfraind, T (1979) Biochem Pharmacol 28: 3051–3056

    Article  PubMed  Google Scholar 

  30. Erdmann E, Philipp G, Scholz H (1980) Biochem Pharmacol 29: 3219–3229

    Article  CAS  PubMed  Google Scholar 

  31. Wellsmith NY, Lindenmayer GE (1980) Circ Res 47: 710–720

    Article  CAS  PubMed  Google Scholar 

  32. Adams RJ, Schwartz A, Grupp G, Grupp I, Lee SW, Wallick ET, Powell T, Twist VW, Gathiram P (1982) Nature 296: 167–169

    Article  CAS  PubMed  Google Scholar 

  33. Mansier P, Lelievre LG (1983) Nature 300: 535–537

    Article  Google Scholar 

  34. Forbush B, Kaplan JH, Hoffman JF (1978) Biochemistry 17: 3667–3675

    Article  CAS  PubMed  Google Scholar 

  35. Rogers TB, Lazdunski M (1979) Biochemistry 18: 135–140

    Article  CAS  PubMed  Google Scholar 

  36. Rossi B, Vuillleumier P, Gache C, Baierna M, Lazdunski M (1980) J Biol Chem 255: 9936–9941

    CAS  PubMed  Google Scholar 

  37. Goeldner MP, Hirth CG, Rossi B, Ponzio G, Lazdunski M (1983) Biochemistry 22: 4685–4690

    Article  CAS  PubMed  Google Scholar 

  38. Castro J, Farley RA (1979) J Biol Chem 254: 2221–2228

    CAS  PubMed  Google Scholar 

  39. Ponzio G, Rossi B, Lazdunski M (1983) J Biol Chem 258: 8799–8805

    Google Scholar 

  40. Kazazoglou T, Renaud JF, Rossi B, Lazdunski M (1983) J Biol Chem 258: 12163–12170

    CAS  PubMed  Google Scholar 

  41. Renaud JF (1980) Biol Cell 37: 97–104

    Google Scholar 

  42. Fehlmann M, Morin O, Kitabgi P, Freychet P (1981) Endocrinology 109: 263–261

    Article  Google Scholar 

  43. Goshima K, Wakabayashi S (1981) J Mol Cell Cardiol 13: 489–509

    Article  CAS  PubMed  Google Scholar 

  44. Blaustein MP (1974) Rev Physiol Biochem Pharmacol 70: 33–82

    Article  CAS  PubMed  Google Scholar 

  45. Sulakhe PV, St Louis PJ (1980) In “Progress in Biophysics and Molecular Biology” 35: 135–195

    Article  CAS  Google Scholar 

  46. Wakabayashi S, Goshima K (1981) Biochim Biophys Acta 642: 158–172

    Article  CAS  PubMed  Google Scholar 

  47. Reuter H, Seitz N (1968) J Physiol (Lond) 195: 451–470

    CAS  Google Scholar 

  48. Baker PF, Blaustein MP, Hodgkin AL, Steinhardt RA (1969) J Physiol (Lond) 200: 431–458

    CAS  Google Scholar 

  49. Ponce-Hornos JE, Langer GA (1980) J Mol Cell Cardiol 12: 1367–1382

    Article  CAS  PubMed  Google Scholar 

  50. Fayet G, Couraud F, Miranda F, Lissitzky S (1974) Eur J Pharmacol 87: 165–174

    Article  Google Scholar 

  51. Bordes M, Bernengo JC, Renaud JF (1983) Rev Sei Intr 54: 1053–1058

    Article  Google Scholar 

  52. Crompton M, Capano M, Carafoli E (1976) Eur J Biochem 69: 453–462

    Article  CAS  Google Scholar 

  53. Carafoli E (1979) FEBS Lett 104: 1–5

    Article  CAS  PubMed  Google Scholar 

  54. Werdan K, Krawietz W, Erdmann E (1983) J Mol Cell Cardiol 8:abstract p 15

    Google Scholar 

  55. Godfraind T, Noël F, Finet M (1983) J Mol Cell Cardiol 8:abstract p 43

    Google Scholar 

  56. Godfraind T, Ghysel-Burton J, De Pover A (1982) Nature 299: 824–826

    Article  CAS  PubMed  Google Scholar 

  57. Forest C, Ponzio G, Rossi B, Lazdunski M, Ailhaud G (1982) Biochem Biophys Res Commun 107: 422–428

    Article  CAS  PubMed  Google Scholar 

  58. Soderberg K, Rossi B, Lazdunski M, Louvard D (1983) J Biol Chem 258: 12300–12307.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lazdunski, M., Kazazoglou, T., Renaud, J.F., Rossi, B. (1984). Digitalis receptors affinity labelling and relation with positive inotropic and cardiotoxic effects. In: Erdmann, E. (eds) Cardiac Glycoside Receptors and Positive Inotropy. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-642-72376-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72376-6_15

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-642-72378-0

  • Online ISBN: 978-3-642-72376-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics