Advertisement

Komplement pp 94-210 | Cite as

Biologische Aktivitäten der Intermediär-Reaktionen des Komplementes

  • Klaus Rother

Zusammenfassung

Nach Injektion von gereinigter C1-Esterase in die Haut von Meerschweinchen fiel eine gefäßpermeabilitätssteigernde Wirkung auf (Ratnoff und Lepow 1963). Obwohl sich die ursprüngliche Vorstellung, die gesteigerte Durchlässigkeit der Gefäßwände sei auf direkte Einwirkung der C1-Esterase selbst zurückzuführen, nicht hat halten lassen, sind die Beobachtungen doch zu einem entscheidenden Ausgangspunkt von Untersuchungen über die Mitwirkung von C-Funktionen bei immunologischen Gewebsläsionen geworden. Der Rückblick auf diese Entwicklung kann das Verständnis der weiter unten erörterten biologischen Wirkungen gegenüber Gefäßwandungen erleichtern. Er läßt zugleich einen Einblick in die komplexe Problematik der Biologie von C-Reaktionen gewinnen und deckt überraschende Speziesdifferenzen auf.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Austen, K. F. and A. L. Sheffer, Detection of hereditary angioneurotic edema by demonstration of a reduction in the second component of human complement. N. Engl. J. Med. 272, 649 (1965).PubMedCrossRefGoogle Scholar
  2. Becker, E. L., The relation of complement to the other systems Proc. roy. Soc. (Lond.) Ser. B 173, 383 (1969).CrossRefGoogle Scholar
  3. Dias da Silva, W. and J. H. Lepow, Complement as a mediator of inflammation. II. Biological properties of anaphylatoxin prepared with purified components of complement. J. exp. Med. 125, 921 (1967).CrossRefGoogle Scholar
  4. Donaldson, V. H. and F. S. Rosen, Action of complement in hereditary angioneurotic edema: The role of C1- esterase. J. clin. Invest. 43, 2204 (1964).PubMedCrossRefGoogle Scholar
  5. Klemperer, M. R., K. F. Austen and F. S. Rosen, Hereditary deficiency of the second component of complement (C2) in man: Further observations on a second kindred. J. Immunol. 98, 72 (1967).PubMedGoogle Scholar
  6. Klemperer, M. R., V. H. Donaldson and F. S. Rosen, Effect of Cl-esterase on vascular permeability in man: Studies in normal and complement-deficient individuals and in patients with hereditary angioneurotic edema. J. clin. Invest. 47, 604 (1968).PubMedCrossRefGoogle Scholar
  7. Ratnoff, O. D. and I. H. Lepow, Complement as a mediator of inflammation. Enhancement of vascular permeability by purified human Cl-esterase. J. exp. Med. 118, 681 (1963).PubMedCrossRefGoogle Scholar
  8. Ashe, W. K. and A. L. Notkins, Neutralization of an infectious herpes simplex virus- antibody complex by anti-γ-globulin. Proc. Nat. Acad. Sci. 56, 447 (1966).PubMedCrossRefGoogle Scholar
  9. Daniels, C. A., T. Borsos, H. J. Rapp, R. Snyderman and AL. Notkins, Neutralization of sensitized virus by the fourth component of complement. Science 165, 508 (1969).PubMedCrossRefGoogle Scholar
  10. Hampar, B., A. L. Notkins, M. Mage and M. A. Keehn, Heterogeneity in the properties of 7S and 19S rabbit-neutralizing antibodies to herpes simplex virus. J. Immunol. 100, 586 (1968).PubMedGoogle Scholar
  11. Linscott, W. D. and W. E. Levinson, Complement components required for virus neutralization by early immunoglobulin antibody. Proc. Nat. Acad. Sci. 64, 520 (1969).PubMedCrossRefGoogle Scholar
  12. Muschel, L. H. and A. J. Toussaint, Studies on the bacteriophage neutralizing activity of serums. II. Comparison of normal and immune phage neutralizing antibodies. J. Immunol. 89, 35 (1962).PubMedGoogle Scholar
  13. Notkins, A. L., S. Mahar, C. Scheele and J. Goffman, Infectious virus- antibody complex in the blood of chronically infected mice. J. Exp. Med. 124, 81 (1966).PubMedCrossRefGoogle Scholar
  14. Notkins, A. L., M. Mage, W. K. Ashe and S. Mahar, Neutralization of sensitized lactic dehydrogenase virus by anti-y-globulin. J. Immunol. 100, 314 (1968).PubMedGoogle Scholar
  15. Schrader, J. D. and L. H. Muschel, Complement components required for coliphage neutralization by normal serum. Fed. Proc. 29, 310 (1970).Google Scholar
  16. Taniguchi, S. and K. Yoshino, Studies on the neutralization of herpes simplex virus. II. Analysis of complement as the antibody-potentiating factors. Virol. 26, 54 (1965).CrossRefGoogle Scholar
  17. Yoshino, K. and S. Taniguchi, The appearance of complement-requiring neutralizing antibodies by immunization and infection with herpes simplex virus. Virol. 22, 193 (1964).CrossRefGoogle Scholar
  18. Cooper, N. R., Immune adherence by the fourth component of complement. Science 165, 396 (1969).PubMedCrossRefGoogle Scholar
  19. Fjellström, K.-E. and C. F. Högman, Serological adhesion of red. cells to human foetal kidney and lung-cell cultures. Acta. path, microbiol. scand. 55, 221 (1962).CrossRefGoogle Scholar
  20. Högmari, C. F., Serological adhesion of red cells to human foetal kidney and lung-cell cultures. Acta. path. microbiol. scand. 55, 209 (1962).Google Scholar
  21. Lachmann, P. J., A comparison of some properties of bovine conglutinin with those of rabbit immunoconglutinin. Immunology 5, 687 (1962).PubMedGoogle Scholar
  22. Lachmann, P. J., A sedimentation pattern technique for measuring conglutination. Its application to demonstrating immuno-conglutinins to C4. Immunology 11, 263 (1966).PubMedGoogle Scholar
  23. Lachmann, P. J., Complement. In: Clinical aspects of immunology, p. 384, Eds.: P. G. H. Gell and R. R. A. Coombs, 2nd ed. (Oxford - Edinburgh 1968).Google Scholar
  24. Lachmann, P. J. and R. R. A. Coombs, Complement, conglutinin and immunoconglutinins. In: Ciba Found. Symp. Complement, p. 242 (Boston 1965).Google Scholar
  25. Budzko, D. B. and H. J. Müller-Eberhard, Cleavage of the fourth component of human complement (C4) by Cl esterase: Isolation and characterization of the low molecular weight product. Immunochemistry 7, 227 (1970).PubMedCrossRefGoogle Scholar
  26. Dias da Silva, W. and J. H. Lepow, Complement as a mediator of inflammation. II. Biological properties of anaphylatoxin prepared with purified components of complement. J. exp. Med. 125, 921 (1967).CrossRefGoogle Scholar
  27. Klemperer, M. R., V. H. Donaldson and F. S. Rosen, Effect of C1 esterase on vascular permeability in man : Studies in normal and complement-deficient individuals and in patients with hereditary angioneurotic edema. J. Clin. Invest. 47, 604 (1968).PubMedCrossRefGoogle Scholar
  28. Klemperer, M. R., F. S. Rosen and V. H. Donaldson, A polypeptide derived from the second component of human complement (C2) which increases vascular permeability. J. Clin. Invest. 48, 44 a (1969).Google Scholar
  29. Polley, M. J. and H. J. Müller-Eberhard, The second component of human complement: Its isolation, fragmentation by Cl esterase and incorporation into C3 convertase. J. Exp. Med. 128, 533 (1968).PubMedCrossRefGoogle Scholar
  30. Müller-Eberhard, H. A. P. Dalmasso and M. A. Calcott, The reaction mechanism of ß1C-globulin (C3) in immune hemolysis, J. Exp. Med. 123, 33 (1966).CrossRefGoogle Scholar
  31. Müller- Eberhard, H. J., Complement. Ann. Rev. Biochem. 38, 389 (1969).PubMedCrossRefGoogle Scholar
  32. Sandbergy A. L., B. Oliveira and A. G. Osler Two complement interaction sites in guinea-pig immunoglobulins. J. Immunol. 106, 282 (1971).Google Scholar
  33. Ackroyd, J. F., The immunological basis of purpura due to drug hypersensitivity. Proc. Roy. Soc. Med. 55, 30 (1962).PubMedGoogle Scholar
  34. Aristowsky, W. M. und E. P. Schaechter, Beobachtungen an der Riedkenberg-Brussinschen Reaktion beim Rückfallfieber des Menschen. 2. Immunitätsforsch. 57, 347 (1928).Google Scholar
  35. Aynaud, M., Action des microbes sur les globulins. Compt. Rend. Soc. Biol. 70, 54 (1911).Google Scholar
  36. Basch, R. S., Inhibition of the third component of the complement system by derivatives of aromatic amino acids. J. Immunol. 94, 629 (1965).PubMedGoogle Scholar
  37. Brussin, A. M., Eine neue Immunitätsreaktion bei experimentellem Rückfallfieber. 2. Immunitätsforsch. 44, 328 (1925).Google Scholar
  38. Cooper, N. R., Complement associated peptidase activity of guinea-pig serum. II. Role of a low molecular weight enhancing factor. J. Immunol. 98, 132 (1967).PubMedGoogle Scholar
  39. Cooper, N. R., Immune adherence by the fourth component of complement. Science 165, 396 (1969).PubMedCrossRefGoogle Scholar
  40. Cooper, N. R. and E. L. Becker, Complement associated peptidase activity of guinea-pig serum. I. Role of complement components. J. Immunol. 98, 119 (1967).PubMedGoogle Scholar
  41. Cooper, N. R. and H. J. Müller-Eberhard, Quantitative relation between peptidase activity and the cell bound second (C2), third (C3) and fourth (C4) components of human complement (C). Fed. Proc. 26, 361 (1967).Google Scholar
  42. Cushman, W. F., E. L. Becker and G. Wirtz, Concerning the mechanism of complement action III. Inhibitors of complement activity. J. Immunol. 79, 80 (1957).PubMedGoogle Scholar
  43. Duke, H. L. and J. M. Wallace, “Red-cell adhesion” in trypanosomiasis of man and animals. Parasitology 22, 414 (1930).CrossRefGoogle Scholar
  44. Govaerts, P., La fonction antixénique des plaquettes sanguines. Arch. Intern. Physiol. 16, 1 (1921).Google Scholar
  45. Henson, P. M., The adherence of leucocytes and platelets induced by fixed IgG antibody or complement. Immunology 16, 107 (1969).PubMedGoogle Scholar
  46. Houlihan, R. B. and A. L. Copley, The adhesion of rabbit platelets to bacteria. J. Bacteriol. 52, 439 (1946).Google Scholar
  47. Huber, H., M. J. Polley, W. D. Linscott, H. H. Fudenberg and H. J. Müller-Eberhard, Human monocytes: Distinct receptor sites for the third component of complement and for immunoglobulin G. Science 162, 1281 (1968).PubMedCrossRefGoogle Scholar
  48. Huber, H. and S. D. Douglas, Receptor sites on human monocytes for complement: Binding of red cells sensitized by cold antibodies. Brit. J. Haematol. 19, 19 (1970).CrossRefGoogle Scholar
  49. Kritschewsky, I. L. und R. S. Tscherikower, Ueber Antikörper, die die Mikroorganismen mit Blutplättchen beladen (Thrombozytobarine). 2. Immunitätsforsch. 42, 131 (1925).Google Scholar
  50. Kritschewsky, I. L. und R. S. Tscherikower, Ein neues Immunitätsphänomen gegen die Spirochaeta icterogenes. 2. Immunitätsforsch. 46, 207 (1926).Google Scholar
  51. Kritschewsky, I. L. und A. M. Brussin, Über die Bedeutung der Thrombozytobarine als Abwehrmittel im Infektionsprozeß. 2. Bakteriol. 120, 150 (1931).Google Scholar
  52. Lachmann, P.J., H. J. Müller-Eberhard, H. G. Kunkel and F. Paronetto, The localization of in vivo bound complement in tissue sections. J. Exp. Med. 115, 63 (1962).PubMedCrossRefGoogle Scholar
  53. Laveran, A. et F. Mesnil, Recherches morphologiques et expérimentales sur le Trypanosome des rats. (Fr. Lewisi Kent.) Ann. Inst. Pasteur 15, 673 (1901).Google Scholar
  54. Lay, W. H. and V. Nussenzweig, Receptors for complement on leukocytes. J. Exp. Med. 128, 991 (1968).PubMedCrossRefGoogle Scholar
  55. Lay, W. H. and V. Nussenzweig, Ca++-dependent binding of antigen 19S antibody complexes to macrophages. J. Immunol. 102, 1172 (1969).PubMedGoogle Scholar
  56. Leupold, F., Untersuchungen über Rezidivstämme bei Trypanosomen mit Hilfe des Rieckenberg-Phänomens. Z. Hyg. Infekt. 109, 144 (1929).CrossRefGoogle Scholar
  57. Levaditi, C., Sur létat de la cytase dans le plasma des animaux normaux et des organismes vaccinés contre le Vibrion cholérique. Ann. Inst. Pasteur 15, 894 (1901).Google Scholar
  58. Nelson, D. S., Immune adherence. Advan. Immunol. 3, 131 (1963).CrossRefGoogle Scholar
  59. Nelson, D. S., Immune adherence, pp. 222. In: Ciba Found. Symp. Complement Eds.: G. E. W. Wolstenholme and J. Knight. Boston: Little, Brown and Co. (1965).Google Scholar
  60. Nelson, D. S. and R. A. Nelson, On the mechanism of immune-adherence. I. Differentiation from acid-adhesion of bacteria to erythrocytes. Yale J. Biol. Med. 31, 185 (1959).PubMedGoogle Scholar
  61. Nelson, R. A., The immune-adherence phenomenon. An immunologically specific reaction between microorganisms and erythrocytes leading to enhanced phagocytosis. Science 118, 733 (1953).PubMedCrossRefGoogle Scholar
  62. Nelson, R. A., The immune-adherence phenomenon. A hypothetical role of erythrocytes in defense against bacteria and viruses. Proc. Roy. Soc. Ned. 49, 55 (1956).Google Scholar
  63. Nelson, R. A., An alternative mechanism for the properdin system. J. Exp. Med. 108, 515 (1958).PubMedCrossRefGoogle Scholar
  64. Nelson, R. A. and D. S. Nelson, On the mechanism of immune-adherence. II. Analogy to mixed aggregation of sensitized antigens in the presence of complement, immune adherence with animal platelets. Yale J. Biol. Med. 31, 201 (1959).PubMedGoogle Scholar
  65. Nelson, R. A., Immune-adherence. In: 2nd Intern. Symp. Immunopath. Eds. P. Grabar and P. Miescher, Basel/Stuttgart, Schwabe (1962).Google Scholar
  66. Nishioka, K. and W. D. Linscott, Components of guinea-pig complement I. Separation of a serum fraction essential for immune hemolysis and immune adherence. J. Exp. Med. 118, 767 (1963).PubMedCrossRefGoogle Scholar
  67. Nishioka, K., T. Sekine, H. Okada, M. Mayumi and S. Kawachi, Studies on the mechanism of immune adherence (abstr.). J. Immunol. 102, 1340 (1969).Google Scholar
  68. Plescia, O. J., K. Amiraian and G. Cavallo, Inhibition of immune hemolysis by proteins and peptides. Fed. Proc. 16, 429 (1957).Google Scholar
  69. Rieckenherg, H., Eine neue Immunitätsreaktion bei experimenteller Trypanosomen-Infektion: Die Blutplättchenprobe. Z. Immunitätsforsch. 26, 53 (1917).Google Scholar
  70. Roskam, J., La fonction antixénique des globulins. Compt. Rend. Soc. Biol. 85, 269 (1921).Google Scholar
  71. Shulman, N. R., Immunoreactions involving platelets. III. Quantitative ispects of platelet agglutination, inhibition of clot retraction, and other reactions caused by the antibody of quinidine purpura. J. Exp. Med. 107, 697 (1958).PubMedCrossRefGoogle Scholar
  72. Siqueira, M. and R. A. Nelson, Platelet agglutination by immune complexes and its possible role in hypersensitivity. J. Immunol. 86, 516 (1961).Google Scholar
  73. Tamura, N. and R. A. Nelson, Three naturally occuring inhibitors of components of complement in guinea-pig and rabbit serum. J. Immunol. 99, 582 (1967).PubMedGoogle Scholar
  74. Taverne, J., Immune-adherence of bacteriophage T2. Brit. J. exp. Pathol. 38, 377 (1957).Google Scholar
  75. Turk, J. L., Immune-adherence with soluble antigens. Immunology 1, 305 (1958).PubMedGoogle Scholar
  76. Adinolfi, M., P. L. Mollison, M. Polley and C. M. Milne, Serological properties of γA antibodies to Escherichia coli present in human colostrum. Immunology 10, 517 (1966).PubMedGoogle Scholar
  77. Basch, R. S., Inhibition of the third component of the complement system by derivatives of aromatic amino acids. J. Immunol. 94, 629 (1965).PubMedGoogle Scholar
  78. Benacerraf, B., M. M. Sebestyen and S. Schlossman,A quantitative study of the kinetics of blood clearance of P32 labelled Escherichia coli and Staphylococci by the reticulo endothelial system. J. Exp. Med. 110, 27 (1959).PubMedCrossRefGoogle Scholar
  79. Benacerraf, B. and P. Miescher, Bacterial phagocytosis by the reticulo endothelial system in vivo under different immune conditions. Ann. N. Y. Acad. Sci. 88, 184 (1960).CrossRefGoogle Scholar
  80. Berken, A. and B. Benacerraf, Properties of antibodies cytophilic for macrophages. J. Exp. Med. 123, 119 (1966).PubMedCrossRefGoogle Scholar
  81. Biozzi, G. and C. Stiffel, Role of normal and immune opsonins in the phagocytosis of bacteria and erythrocytes by the reticuloendothelial cells. Eds.: Grabar P. and P.Miescher; In: 2nd Int. Symp. on Immunopathologie, p. 249 (Basel-Stuttgart 1962).Google Scholar
  82. Boyden, S. V., Cellular recognition of foreign matter. Int. Rev. exp. Path. 2, 311 (1963).PubMedGoogle Scholar
  83. Cohn, Z. A. and J. G. Hirsch, Phagocytic cells. Eds.: R. J. Dubos, J. G. Hirsch; In: Bacterial and mycotic infections of man. p. 215 (Philadelphia 1965).Google Scholar
  84. Cooper, N. R. and H. J. Müller-Eberhard, Quantitative relation between peptidase activity and the cell bound second (C2), third (C3) and fourth (C4) components of human complement (C). Fed. Proc. 26, 361 (1967).Google Scholar
  85. Cooper, N. R. and E. L. Becker, Complement associated peptidase activity of guinea pig serum. I. Role of complement components. J. Immunol. 98, 119 (1967).PubMedGoogle Scholar
  86. Ecker, E. E. and G. Lopez-Castro, Complement and opsonic activities of fresh human sera. J. Immunol. 55, 169 (1947).PubMedGoogle Scholar
  87. Gerlings-Petersen, B. T. and K. W. Pondman, Erythrophagocytosis : A study of the antigen-antibody-complement reaction. Vox sang. 7, 655 (1962).PubMedCrossRefGoogle Scholar
  88. Gigli, I. and R. A. Nelson, Complement dependent immune phagocytosis. I. Requirements for Cl, C4, C2, C3. Exp. Cell. Res. 51, 45 (1968).PubMedCrossRefGoogle Scholar
  89. Glynn, A. A. and F. A. Medhurst, Possible extracellular and intracellular bactericidal actions of mouse complement. Nature 213, 608 (1967).PubMedCrossRefGoogle Scholar
  90. Götze, O. and H. J. MüllerEberhard, Lysis of erythrocytes by complement in the absence of antibody. J. Exp. Med. 132, 898 (1970).PubMedCrossRefGoogle Scholar
  91. Götze, O., Persönliche Mitteilung. (1971).Google Scholar
  92. Gordon, J. and F. C. Thompson, The relationship between the complement and opsonin of normal serum. Brit. J. exp. Path. 16, 101 (1935).Google Scholar
  93. Hirsch, J. G. and B. Strauss, Studies on heat-labile opsonin in rabbit serum. J. Immunol. 92, 145 (1964).PubMedGoogle Scholar
  94. Howard, C. J. and A. A. Glynn, The virulence for mice of strains of Escherichia coli related to the effects of K antigens on their resistance to phagocytosis and killing by complement. Immunology 20, 767 (1971).PubMedGoogle Scholar
  95. Huber, H., M. J. Polley, W. D. Linscott, H. H. Fudenberg and H. J. Müller-Eberhard, Human monocytes: distinct receptor sites for the third component of complement and for immunoglobulin G, Science 162, 1281 (1968).PubMedCrossRefGoogle Scholar
  96. Ishizaka, T., K, Ishizaka, T. Borsos and H. J. Rapp, C1 fixation by human isoagglutinins: fixation of C1 by γG and γM but not by γA antibody. J. Immunol. 97, 716 (1966).PubMedGoogle Scholar
  97. Iyer, G. Y. N. and J. H. Quastel, NADPH and NADP oxidation by guinea pig polymorphonuclear leukocytes. Can. J. Biochem. Physiol. 41, 427 (1963).PubMedCrossRefGoogle Scholar
  98. Jenkin, C. R., The effect of opsonins on the intracellular survival of bacteria. Brit. J. exp. Path. 44, 47 (1963).Google Scholar
  99. Jenkin, C. R. and D. Rowley, Opsonins as determinants of survival in intraperitoneal infections in mice. Nature 184, 474 (1959).PubMedCrossRefGoogle Scholar
  100. Jeter, W. S., A. P. McKee and R. J. Mason, Inhibition of immune phagocytosis of Diplococcus pneumoniae by human neutrophils with antibody against complement. J. Immunol. 86, 386 (1961).PubMedGoogle Scholar
  101. Johnston, R. B., M. R. Klemperer, C. A. Alper and F. S. Rosen, The enhancement of bacterial phagocytosis by serum. The role of complement components and two cofactors. J. Exp. Med. 129, 1275 (1969)PubMedCrossRefGoogle Scholar
  102. Klebanoff, S. J., Myeloperoxidase-halide-hydrogen peroxide antibacterial system. J. Bacteriol. 95, 2131 (1968).PubMedGoogle Scholar
  103. Lay, W. H. and V. Nussenzweig, Receptors for complement on leukocytes. J. Exp. Med. 128, 991 (1968).PubMedCrossRefGoogle Scholar
  104. Lo Buglio, A. F., R. S. Cotran and J. H. Jandl, Red cells coated with immunoglobulin G: Binding and sphering by mononuclear cells in man. Science 158, 1582 (1967).CrossRefGoogle Scholar
  105. McRipley, R. J. and A. J. Sbarra, The role of the phagocyte in host-parasite interactions. XII. Hydrogen peroxide-myeloperoxidase bactericidal system in the phagocyte. J. Bacteriol. 94, 1425 (1967).PubMedGoogle Scholar
  106. Medhurst, F. and A. A. Glynn, In vivo bactericidal activity of mouse complement against Escherichia coli. Brit. J. exp. Path. 51, 498 (1970).Google Scholar
  107. Menzel, J., Possible participation of serum-complement in the intracellular killing of E. coli. Advan. Exp. Med. Biol, (im Druck) (1971).Google Scholar
  108. Menzel, J. and K. Rother, Participation of serum complement in the intracellular killing of E. coli 08K27. Abstracts RES meeting, Freiburg, Germany (1970).Google Scholar
  109. Michael, J. G., I. L. Whitby and M. Landy, Studies on natural antibodies to gram-negative bacteria. J. Exp. Med. 115, 131 (1962).PubMedCrossRefGoogle Scholar
  110. Miller, M. E. and U. R. NilssonA familial deficiency of the phagocytosis enhancing activity of serum related to a dysfunction of the fifth component of complement (C5). N. Eng. J. Med. 282, 354 (1970).CrossRefGoogle Scholar
  111. Nelson, D. S., Immune-adherence. Eds.: Wolstenholme, G. E. W. and J. Knight; In: Ciba Found. Symp. Complement, p. 222 (Boston 1965).Google Scholar
  112. Nelson, R. A., Immune-adherence. Eds.: Grabar P. and P. Miescher; In: 2nd. Int. Symp. on Immunopathology, p. 245 (Basel-Stuttgart 1962).Google Scholar
  113. Nelson, R. A. and J. Lebrun, The requirement for antibody and complement for in vitro phagocytosis of starch granules. J. Hyg. 54, 8 (1956).CrossRefGoogle Scholar
  114. Neufeld, F. und W. Rimpau, Über die Antikörper des Streptokokken- und Pneumokokken-Immunserums. Dtsch. Med. Wschr. 30, 1458 (1904).CrossRefGoogle Scholar
  115. Pearlman, D. S., P. A. Ward and E. A. Becker, The requirement of serine esterase function in complement- dependent erythrophagocytosis. J. Exp. Med. 130, 745 (1969).PubMedCrossRefGoogle Scholar
  116. Pisano, J. C., N. R. Di Lucio and N. K. Salky, Absence of macrophage humoral recognition factor(s) in patients with carcinoma. J. Lab. clin. Med. 76, 141 (1970).PubMedGoogle Scholar
  117. Rabinovitch, M., Studies on the immunoglobulins which stimulate the ingestion of glutaraldehyde-treated red cells attached to macrophages. J. Immunol. 99, 1115 (1967).PubMedGoogle Scholar
  118. Rossi, F. and M. Zatti, Change in the metabolic pattern of polymorphonuclear leukocytes during phagocytosis. Brit. J. exp. Path. 45, 548 (1964).PubMedGoogle Scholar
  119. Rother, K., Serumkomplement als möglicher Resistenzfaktor: Opsonisierung und Bakterizidie. Eds.: G. Mössner und R. Thomsson; In: Infektionskrankheiten, S. 329, IV. Int. Kongreß für Infektionskrankheiten (Stuttgart 1967).Google Scholar
  120. Rother, K. and U. Rother, Studies on complement defective rabbits. IV. Blood clearance of intravenously injected S. typhi by the reticulo endothelial system. Proc. Soc. exp. Biol. Med. (N. Y.) 119, 1055 (1965).Google Scholar
  121. Rowley, D., Bactericidal activity of macrophages in vitro against Escherichia coli. Nature 181, 1738 (1958).PubMedCrossRefGoogle Scholar
  122. Rowley, D., Phagocytosis. Advan. Immunol. 2, 241 (1962).CrossRefGoogle Scholar
  123. Rowley, D., Persönliche Mitteilung (1970).Google Scholar
  124. Rowley, D. and C. R. Jenkin, Partial purification of opsonins in pig serum to a strain of Salmonella typhimurium. Immunology 5, 557 (1962).PubMedGoogle Scholar
  125. Sbarra, A. J. and M. Karnovsky, The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J. Biol. Chem. 234, 1355 (1959).PubMedGoogle Scholar
  126. Sbarra, A. J., B, B. Paul, R. R. Strauss and A. A. Jacobs, Aldehyde generation by the MPO, H2O2, chloride system in the phagocyte and its antimicrobial activity. Abstracts RES meeting, Freiburg, Germany (1970).Google Scholar
  127. Schultz, J. (Ed.), Biochemistry of the phagocytic process (Amsterdam-London 1970).Google Scholar
  128. Selvaraj, R. J. and A. J. Sbarra, Relationship of glycolytic metabolism to particle entry and destruction in phagocytizing cells. Nature 211, 1271 (1966).CrossRefGoogle Scholar
  129. Shin, H. S., M. R. Smith and W. B. Wood, Heat labile opsonins to pneumococcus. II. Involvement of C3 and C5. J. Exp. Med. 130, 1229 (1969).PubMedCrossRefGoogle Scholar
  130. Smith, M. R. and W. B. Wood, Heat labile opsonins to pneumococcus. I. Participation of complement. J. Exp. Med. 130, 1209 (1969).PubMedCrossRefGoogle Scholar
  131. Spiegelberg, H. L., P. A. Miescher and B. Benacerraf, Studies of the role of complement in the immune clearance of Escherichia coli and rat erythrocytes by the reticulo endothelial system in mice. J. Immunol. 90, 751 (1963).PubMedGoogle Scholar
  132. Stiff el, C., G. Biozzi, D. Mouton, Y. Bouthillier and C. Decreusefond, Studies on phagocytosis of bacteria by the reticuloendothelial system in a strain of mice lacking hemolytic complement. J. Immunol. 93, 246 (1964).PubMedGoogle Scholar
  133. Strauss, R. R., B. B. Paul, A. A. Jacobs and A. J. Sbarra, The role of the phagocyte in host-parasite interactions. XIX. Leukocytic glutathione reductase and its involvement in phagocytosis. Arch. Biochem. Biophys. 135, 265 (1969).PubMedCrossRefGoogle Scholar
  134. Strauss, R. R., B. B. Paul, A. A. Jacobs and A. J. Sbarra, Role of the phagocyte in host-parasite interactions. XXII. H2O2-dependent decarboxylation and deamination by myeloperoxidase and its relationship to antimicrobial activity. J. Reticuloendothel Soc. 7, 754 (1970).PubMedGoogle Scholar
  135. Stuart, A. E., The reticuloendothelial system (Edinburgh/ London 1970).Google Scholar
  136. Tomasi, T.B. and J. Bienenstock, Secretory immunoglobulins. Advan. Immunol. 9, 1 (1968).CrossRefGoogle Scholar
  137. Vaermanns, J. P., Studies on IgA-immunoglobulins in man and animals (Louvain 1970).Google Scholar
  138. Ward, H. K. and J. F. Enders, An analysis of the opsonic and tropic action of normal and immune sera based on experiments with the pneumococcus. J. Exp. Med. 57, 527 (1933).PubMedCrossRefGoogle Scholar
  139. Wilson, G. S. and A. A. Miles, In: Topley and Wilson’s “Principles of Bacteriology and Immunity”; 5th Ed., p. 164 (Baltimore 1964).Google Scholar
  140. Wright, A. E. and S. R. Douglas, An experimental investigation of the role of the blood fluids in connection with phagocytosis. Proc. Roy. Soc. B. 72, 357 (1903).CrossRefGoogle Scholar
  141. Barta, O., V. Barta, O. P. Miniats and D. G. Ingram, Complement and conglutinin in the serum of germ-free and conventional piglets. J. Immunol. 105, 350 (1970).PubMedGoogle Scholar
  142. Bordet, J. et F. P. Gay, Sur les relations des sensibilisatrices avec l’alexine. Ann. Inst. Pasteur 20, 467 (1906).Google Scholar
  143. Bordet, J. et O. Streng, Les phenomènes d’absorption de la conglutinine du serum de boeuf. Zbl. Bakt. 49, 260 (1909).Google Scholar
  144. Coombs, R. R. A., The conglutination and sensitisation reactions. Doctoral Thesis, Univ. of Cambridge (Cambridge 1947).Google Scholar
  145. Coombs, R. R. A., A. M. Coombs and D. G. Ingram, The serology of conglutination and its relation to disease. Oxford: Blackwell Scientific Publ. (1961).Google Scholar
  146. Henson, P. M., (1967) zitiert bei Lachmann (1967).Google Scholar
  147. Ingram, D. G., The conglutination phenomenon. XIII. In vivo interactions of conglutinin and experimental bacterial infection. Immunology 2, 322 (1959).PubMedGoogle Scholar
  148. Ingram, D. G., The conglutination phenomenon. XIV. The resistance enhancing effect of conglutinin and immunoconglutinin in experimental bacterial infection. Immunology 2, 334 (1959 a).PubMedGoogle Scholar
  149. Jaton, J. C., (1966) Persönliche Mitteilung aus: Lachmann (1967).Google Scholar
  150. Jettmar v. H. M., Studien über die Konglutination und über das Schwanken des Konglutiningehaltes im Serum gesunder und kranker Rinder. Z. Immunitätsforsch. 36, 148 (1923).Google Scholar
  151. Korn, E. D. and D. H. Northcote, Physical and chemical properties of polysaccharides and glycoproteins of the yeast-cell wall. Biochem. J. 75, 12 (1960).PubMedGoogle Scholar
  152. Kronvall, G., J. H. Dossett, P. G. Quie and R. C. Williams, Reaction of bovine conglutinin in human in vitro phagocytic system. Proc. Soc. Exp. Biol. Med. 133, 826 (1970).PubMedGoogle Scholar
  153. Lachmann, P. J., A comparison of some properties of bovine conglutinin with those of rabbit immuno-conglutinin. Immunology 5, 687 (1962).PubMedGoogle Scholar
  154. Lachmann, P. J., Conglutinin and immunoconglutinins. Advan. Immunol. 6, 479 (1967).CrossRefGoogle Scholar
  155. Lachmann, P. J. and C. B. Richards, An estimate of some molecular parameters of bovine conglutinin. Immunochemistry 1, 37 (1964).PubMedCrossRefGoogle Scholar
  156. Lachmann, P. J. and R. R. A. Coombs, Complement, conglutinin and immuno-conglutinins. In: Ciba Found. Symp. Complement, p. 242. Eds.: Wolstenholme, G. E. W. and J. Knight (Boston 1965).Google Scholar
  157. Lachmann, P. J. and R. Liske, The preparation and properties of alexinated intermediates that react with conglutinin. I. Guinea-pig complement. Immunology 11, 243 (1966).PubMedGoogle Scholar
  158. Lachmann, P. J., P. M. Henson, D. Elias and D. H. Northcote, zitiert bei Lachmann (1967).Google Scholar
  159. Lachmann, P. J. and II. J. Müller-Eberhard, The description in human serum of conglutinogen-activating factor and its effects on the third component of complement. J. Immunol. 100,691 (1968).PubMedGoogle Scholar
  160. Leon, M. A., Role of cations in conglutination and formation of properdin-zymosan complex from bovine serum. Proc. Soc. exp. Biol. Med. (N. Y.) 96, 202 (1957).Google Scholar
  161. Leon, M. A., R. Yokohari and C. Itoh, Chemical specificity in the conglutinin system and its relation to complement structure. Complement workshop: abstracts. Immunochemistry 3, 499 (1966).CrossRefGoogle Scholar
  162. Le Page, R. W. F. and R. R. A. Coombs, (1964) zitiert bei Lachmann und Coombs (1965).Google Scholar
  163. Le Page, R. W. F. and B. A. Matson, (1965) zitiert bei Lachmann und Coombs (1965).Google Scholar
  164. Sell, K. W., Doctoral Thesis, University of Cambridge, Cambridge England (1966), zitiert nach Lachmann (1967).Google Scholar
  165. Streng, O., Studien über das Verhalten des Rinderserums gegenüber den Mikrobien. Versuch einer neuen serodiagnostischen Methode. Zbl. Bakteriol. Parasitenkd. 50, 47 (1909).Google Scholar
  166. Bienenstock, J. and K. J. Bloch, Some characteristics of human immunoconglutinin. J. Immunol. 96, 637 (1966).PubMedGoogle Scholar
  167. Bienenstock, J. and K. J. Bloch, Immunoconglutinin in various rheumatic diseases and certain diseases suspected of an autoimmune pathogenesis. Arthritis Rheum. 10, 187 (1967).PubMedCrossRefGoogle Scholar
  168. Coombs, R. R. A., The conglutination and sensitisation reactions. Doctoral Thesis, University of Cambridge (1947).Google Scholar
  169. Coombs, A. M. and R. R. A. Coombs, The conglutination phenomenon. IX. The production of immuno-conglutinin in rabbits. J. Hyg. Camb. 51, 509 (1953).PubMedCrossRefGoogle Scholar
  170. Coombs, R. R. A., A. M. Coombs and D. G. Ingram, The serology of conglutination and its relation to disease (Oxford 1961).Google Scholar
  171. Henson, P. M., Antibody responses to bacteria. The effect of the immunoglobulin type of antibacterial antibody on immunoconglutinin stimulation in rabbits and guinea-pigs. Immunology 13, 261 (1967).PubMedGoogle Scholar
  172. Henson, P. M., Immunoconglutinins of different classes demonstrated by the antiglobulin reaction. Immunology 14, 697 (1968).PubMedGoogle Scholar
  173. Ingram, D. G., Complement and conglutinin. Doctoral Thesis, Univ. of Cambridge (1958).Google Scholar
  174. Ingram, D. G., The conglutination phenomenon. XIII. In vivo interactions of conglutinin and experimental bacterial infection. Immunology 2, 322 (1959).PubMedGoogle Scholar
  175. Ingram, D. G., The conglutination phenomenon. XIII. The resistance enhancing effect of conglutinin and immunoconglutinin in experimental bacterial infection. Immunology 2, 334 (1959 a).PubMedGoogle Scholar
  176. Ingram, D. G., H. Barber, D. M. McLean, M. A. Soltys and R. R. A. Coombs, The conglutination phenomenon. XII. Immunoconglutinin in experimental infections of laboratory animals. Immunology 2, 268 (1959).PubMedGoogle Scholar
  177. Ingram, D. G. and M. A. Soltys, Immunity in trypanosomiasis. IV. Immunoconglutinin in animals infected with Trypanosoma brucei. Parasitology 50, 231 (1960).PubMedCrossRefGoogle Scholar
  178. Lachmann, P. J., A comparison of some properties of bovine conglutinin with those of rabbit immunoconglutinin. Immunology 5, 687 (1962).PubMedGoogle Scholar
  179. Lachmann, P. J., A sedimentation pattern technique for measuring conglutination. Its application to demonstrating immunoconglutinins to C4. Immunology 11, 263 (1966).PubMedGoogle Scholar
  180. Lachmann, P. J., Complement. In: Clinical aspects of immunology, p. 384. Eds.: Gell, P. G. H. and Coombs (Oxford and Edinburgh 1968).Google Scholar
  181. Lachmann, P. J. and R. R. A. Coombs, Complement, conglutinin and immuno-conglutinins. Ciba Found. Symp. Complement, p. 242. Eds.: Wolstenholme, G. E. W., Knight, J. (Boston 1965).Google Scholar
  182. Lachmann, P. J. and R. Liske, The preparation and properties of alexinated intermediates that react with conglutinin. II. Equine, rabbit and human complement. Immunology 11, 255 (1966).PubMedGoogle Scholar
  183. Lachmann, P. J. and R. A. Thomson, Immunoconglutinins in human saliva a group of unusual IgA antibodies. Immunology 18, 157 (1970).PubMedGoogle Scholar
  184. Marks, J. and R. R. A. Coombs, The conglutination phenomenon. XI. Immunoconglutinin in human sera. J. Hyg. Camb. 55, 81 (1957).PubMedCrossRefGoogle Scholar
  185. Pernis, B., G. Gambini and M. Finalli, Immunoconglutinins in the blood of silicotics. Med. Lavaro 50, 250 (1959).Google Scholar
  186. Streng, O., Immuno-Konglutinin anti Komplement. Acta Path. Microbiol. Scand. Suppl. III, 20, 411 (1930).Google Scholar
  187. Wartiovaara, T. W., Über die Entwicklung der konglutinierenden Eigenschaft bei der Immunisierung. Acta Soc. Med. “Duodecim” Ser. A, 14, Nr. 15, 1 (1932).Google Scholar
  188. Taylor, F. B. and H. J. Müller-Eberhard, Factors influencing lysis of whole blood clots. Nature 216, 1023 (1967).PubMedCrossRefGoogle Scholar
  189. Taylor, F. B. and H. J. Müller-Eberhard, A qualitative description of factors involed in lysis of diluted whole blood clots and fusion of platelets. Z. med. Mikrobiol. u. Immunol. 155, 96 (1969).Google Scholar
  190. Taylor, F. B. and M. B. Zucker, Prolonged clot lysis time and absence of platelet γM-globulin in patients with thrombasthenia. Nature 222, 99 (1969).PubMedCrossRefGoogle Scholar
  191. Taylor, F.B. and H. J. Müller-Eberhard, Qualitative description of factors involed in the retraction and lysis of dilute whole blood clots and in the aggregation and retraction of platelets. J. Clin. Invest. 49, 2068 (1970).PubMedCrossRefGoogle Scholar
  192. Barbaro, J. F., The release of histamine from rabbit platelets by means of antigen- antibody precipitates. I. The participation of the immune complex in histamine release. J. Immunol. 86, 369 (1961).PubMedGoogle Scholar
  193. Barbaro, J. F., The release of histamine from rabbit platelets by means of antigen-antibody precipitates. II. The role of plasma in the release of histamine. J. Immunol. 86, 377 (1961).PubMedGoogle Scholar
  194. Benveniste, J. and P. M. Henson, Leukocyte-dependent mechanism of histamine release from rabbit platelets: Transfer of responsible antibody (abstr.). Fed. Proc. 30, 654 (1971).Google Scholar
  195. Cochrane, C. G., Mechanisms involved in the deposition of immune complexes in tissues. J. Exp. Med. 134, 75 s (1971).CrossRefGoogle Scholar
  196. Gocke, D. J. and A. G. Osier, In vitro damage of rabbit platelets by an unrelated antigen-antibody reaction. I. General characteristics of the reaction. J. Immunol. 94, 236 (1965).PubMedGoogle Scholar
  197. Greaves, M. W. and J. Mongar, The histamine content of rabbit leukocytes and its release during in vitro anaphylaxis. Immunology 15, 733 (1968).PubMedGoogle Scholar
  198. Henson, P. M., Role of complement and leucocytes in immunologic release of vasoactive amines from platelets. Fed. Proc. 28, 1721 (1969).PubMedGoogle Scholar
  199. Henson, P. M., Release of vasoactive amines from rabbit platelets induced by sensitized mononuclear leucocytes and antigen. J. Exp. Med. 131, 287 (1970).PubMedCrossRefGoogle Scholar
  200. Henson, P. M., Mechanisms of release of constituents from rabbit platelets by antigen- antibody complexes and complement. I. Lytic and nonlytic reactions. J. Immunol. 105, 476 (1970a).PubMedGoogle Scholar
  201. Henson, P. M., Mechanisms of release of constituents from rabbit platelets by antigen-antibody complexes and complement. II. Interaction of platelets with neutrophils. J. Immunol. 105, 490 (1970 b).PubMedGoogle Scholar
  202. Henson, P. M. and C. G. Cochrane, Immunological induction of increased vascular permeability. II. Two mechanisms of histamine release from rabbit platelets involving complement. J. Exp. Med. 129, 167 (1969).PubMedCrossRefGoogle Scholar
  203. Henson, P. M. and C. G. Cochrane, Antigen-antibody complexes, platelets and increased vascular permeability. In: Cellular and humoral mechanisms in anaphylaxis and allergy, p. 129. Ed.: Movat, H. Z. (Basel/New York 1969a).Google Scholar
  204. Humphrey, J.H. and R. Jaques, The histamine und serotonin content of the platelets and polymorphonuclear leukocytes of various species. J. Physiol. (London) 124, 305 (1954).Google Scholar
  205. Des Prez, R. and R. E. Bryant, Two mechanisms of immunologically-induced injury to rabbit platelets. J. Immunol. 102, 241 (1969).PubMedGoogle Scholar
  206. Schoenbechler, M. J. and J. F. Barbaro, The requirement for sensitized lymphocytes in one form of antigen-induced histamine release from rabbit platelets. Proc. Nat. Acad. Sci. 4, 1247 (1968).CrossRefGoogle Scholar
  207. Schoenbechler, M. J. and E. H. Sadun, In vitro histamine release from blood cellular elements of rabbits infected with Schistosoma mansoni. Proc. Soc. Exp. Biol. Med. 127, 601 (1968).Google Scholar
  208. Siraganian, R. P., A. G. Secchi and A. G. Osier, The allergic response of rabbit platelets. I. Membrane permeability changes. J. Immunol. 101, 1130 (1968).PubMedGoogle Scholar
  209. Siraganian, R. P., A. G. Secchi and A. G. Osier, In: Biochemistry of the Acute Allergic Reaction, p. 229. K. F. Austen and E. L. Becker, Eds. (Oxford, England 1968 a).Google Scholar
  210. Siraganian, R. P. and A. G. Osier, Destruction of rabbit platelets in the allergic response of sensitized leukocytes. II. Evidence for basophil involvement. J. Immunol. 106, 1252 (1971).PubMedGoogle Scholar
  211. Bokisch, V. A., An inactivator in human serum of C3- and C5-derived anaphylatoxins. Fed. Proc. 28, 485 (1969).Google Scholar
  212. Bokisch, V. A., D. B. Budzko, H. J. Müller-Eberhard and C. G. Cochrane, Cleavage of human C3 by trypsin into three antigenically distinct fragments including anaphylatoxin. Fed. Proc. 27, 314 (1968).Google Scholar
  213. Bokisch, V. A. and H. J. Müller-Eberhard, The enzyme nature of anaphylatoxin inactivator (AI) of human serum. Z. med. Mikrobiol. Immunol. 155, 97 (1969).Google Scholar
  214. Bokisch, V. A., H. J. Müller-Eberhard and C. G. Cochrane, Isolation of a fragment (C3a) of the third component of human complement containing anaphylatoxin and chemotactic activity and description of an anaphylatoxin inactivator of human serum. J. Exp. Med. 129, 1109 (1969).PubMedCrossRefGoogle Scholar
  215. Bokisch, V. A. and H. J. Müller-Eberhard, Anaphylatoxin inactivator of human plasma: Its isolation and characterization as a carboxypeptidase. J. Clin. Invest. 49, 2427 (1970).PubMedCrossRefGoogle Scholar
  216. Brade, V. and W. Vogt, Anaphylatoxin formation by contact activation of plasma. I. Activation by zymosan without participation of antibody. Eur. J. Immunol. 1, 290 (1971).PubMedCrossRefGoogle Scholar
  217. Brade, V. and W. Vogt, Anaphylatoxin formation by contact activation of plasma. II. Implication of properdin and an unknown plasma factor in activation by zymosan. Eur. J. Immunol. 1, 295 (1971 a).PubMedCrossRefGoogle Scholar
  218. Budzko, D. B. and H. J. Müller-Eberhard, Anaphylatoxin release from the third component of human complement by hydroxylamine. Science 165, 506 (1969).PubMedCrossRefGoogle Scholar
  219. Budzko, D. B. and H. J. Müller-Eberhard, C3-anaphylatoxin: Chemical studies of the precursor and of the anaphylatoxins produced by C3 convertase, trypsin or hydroxylamine (1969 a). Zitiert bei Bokisch, Müller-Eberhard and Cochrane (1969).Google Scholar
  220. Budzko, D. B., V. A. Bokisch and H. J. Müller-Eberhard, A fragment of the third component of human complement with anaphylatoxin activity. Biochemistry 10, 1166 (1971).PubMedCrossRefGoogle Scholar
  221. Cochrane, C. G. and H. J. Müller-Eberhard, Biological effects of C3 fragmentation. Fed. Proc. 26, 362 (1967).Google Scholar
  222. Cochrane, C. G. and H. J. Müller-Eberhard, The derivation of two distinct anaphylatoxin activities from the third and fifth components of human complement. J. Exp. Med. 127, 371 (1968).PubMedCrossRefGoogle Scholar
  223. Dias da Silva, W. and I. H. Lepow, Anaphylatoxin formation by purified human Cl esterase. J. Immunol. 95, 1080 (1965).Google Scholar
  224. Diasda Silva, W, and I. H. Lepow, Properties of anaphylatoxin prepared from purified components of human complement. Immunochemistry 3, 497 (1966).Google Scholar
  225. Dias da Silva, W. and J. H. Lepow, Complement as a mediator of inflammation. II. Biological properties of anaphylatoxin prepared with purified components of human complement. J. Exp. Med. 125, 921 (1967).CrossRefGoogle Scholar
  226. Dias da Silva, W., J. W. Eisele and J. H. Lepow, Complement as a mediator of inflammation. III. Purification of the activity with anaphylatoxin properties generated by interaction of the first four components of complement and its identification as a cleavage product of C3. J. Exp. Med. 126, 1027 (1967).CrossRefGoogle Scholar
  227. Erdös, E. G., and W. M. Sloane, An enzyme in human blood plasma that inactivates bradykinin and kallidin. Biochem. Pharmacol. 11, 585 (1962).PubMedCrossRefGoogle Scholar
  228. Flexner, S. and H. Noguchi, Snake venom in relation to haemolysis, bacteriolysis, and toxicity. J. Exp. Med. 6, 277 (1903).CrossRefGoogle Scholar
  229. Friedberger, E., Weitere Untersuchungen über Eiweißanaphylaxie IV. Mitteilung. Z. Immunitätsforsch. 4, 636 (1910).Google Scholar
  230. Götze, O. and H. J. Müller-Eberhard, The C3-activator system: An alternate pathway of complement activation. J. Exp. Med. 134, 90s (1971).PubMedGoogle Scholar
  231. Lepow, I. H., W. Dias da Silva and J. W. Eisele, Nature and biological properties of human anaphylatoxin. In: Biochemistry of the acute allergic reactions pp. 265. Eds.:Austen K. F. and Becker, E. L. (Oxford and Edinburgh 1968).Google Scholar
  232. Lepow, I. H., W. Dias da Silva and R. A. Patrick, Biologically active cleavage products of components of complement. In: Cellular and humoral mechanisms in anaphylaxis and allergy, p. 237. Ed.: H. Z. Movat, Karger, Basel/New York (1969).Google Scholar
  233. Lepow, I. H. and R. A. Patrick, Cleavage products of components of human complement. J. Immunol. 102, 1340 (1969).Google Scholar
  234. Mota, I., Action of anaphylactic shock and anaphylatoxin on mast cells and histamine in rats. Brit. J. Pharmacol. 12, 453 (1957).PubMedGoogle Scholar
  235. Müller-Eberhard, H. J., Mechanism of inactivation of the third component of human complement (C3) by cobra venom. Fed. Proc. 26, 744 (1967).Google Scholar
  236. Müller-Eberhard, H. J., U. R. Nilsson, A. P. Dalamasso, M. J. Polley and M. A. Calcott, A molecular concept of immune cytolysis. Arch. Pathol. 82, 205 (1966).PubMedGoogle Scholar
  237. Mutsaars, W. and J. Barthels-Viroux, Recherches sur un facteur favorisant la destruction du troisième composant du serum chaffe de cobaye par le venin de cobra. Ann. Inst. Pasteur 73, 451 (1947).Google Scholar
  238. Nelson, R. A., A new concept of immuno-suppression in the hypersensitivity reactions and in transplantation immunity. Surv. Ophtal. 11, 498 (1966).Google Scholar
  239. Omorokow, L., Über die Wirkung des Cobragiftes auf die Komplemente. Z. Immunitätsforsch. 10, 285 (1911).Google Scholar
  240. Shin, H. S., R. Snyderman, E. Friedman and S. E. Mergenhagen, Cleavage of guinea-pig C3 by serum-treated endotoxic lipopolysaccharide. Fed. Proc. 28, 485 (1969).Google Scholar
  241. Vogt, W. und G. Schmidt, Abtrennung des anaphylatoxinbildenden Prinzips aus Cobragift von anderen Giftkomponenten. Experientia 20, 207 (1964).PubMedCrossRefGoogle Scholar
  242. Vogt, W., G. Bodammer, E. Luffl and G. Schmidt, Formation of anaphylatoxin in human serum. Experientia 25, 744 (1969).PubMedCrossRefGoogle Scholar
  243. Ward, P. A.,A plasmin-split fragment of C3 as a new chemotactic factor. J. Exp. Med. 126, 189 (1967).PubMedCrossRefGoogle Scholar
  244. Ward, P. A., W. Dias da Silva and I. H. Lepow, Unveröffentlichte Ergebnisse (1967). Zitiert bei: Lepow, Dias da Silva und Eisele (1968).Google Scholar
  245. Bokischy V. A., H. J. Müller-Eberhard and C. G. Cochrane, Isolation of a fragment (C3a) of the third component of human complement containing anaphylatoxin and chemotactic activity and description of an anaphylatoxin inactivator of human serum. J. Exp. Med. 129, 1109 (1969).CrossRefGoogle Scholar
  246. Bokisch, V. A. and H. J. Müller-Eberhard, Anaphylatoxin inactivator of human plasma : Its isolation and characterization as a carboxypeptidase. J. Clin. Invest. 49, 2427 (1970).PubMedCrossRefGoogle Scholar
  247. Boyden, S. V., The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leukocytes. J. Exp. Med. 115, 453 (1962).PubMedCrossRefGoogle Scholar
  248. Boyden, S. V., R. J. North and S. M. Faulkner, Complement and the activity of phagocytosis. In: Ciba Found. Symp. Complement p. 190 Eds.: G. E. W. Wolstenholme and J. Knight (Boston 1965).Google Scholar
  249. Budzko, D. B., V. A. Bokisch and H. J. Müller-Eberhard, A fragment of the third component of human complement with anaphylatoxin activity. Biochemistry 10, 1166 (1971).PubMedCrossRefGoogle Scholar
  250. Chapitis, J., P. A. Ward and I. H. Lepow, Generation of chemotactic activity from human serum and purified components of complement by Serratia proteinase (abstr.). J. Immunol. 107, 317 (1971).Google Scholar
  251. Hill, J. H. and P. A. Ward, C3 leukotactic factors produced by a tissue protease. J. Exp. Med. 130, 505 (1969).PubMedCrossRefGoogle Scholar
  252. Hill, J. H. and P. A. Ward, C3 leukotactic fragments in experimental myocardial infarcts (abstr.). Fed. Proc. 29, 690 (1970).Google Scholar
  253. Hill, J. H. and P. A. Ward, The phlogistic role of C3 leukotactic fragments in myocardial infarcts of rats. J. Exp. Med. 133, 885 (1971).PubMedCrossRefGoogle Scholar
  254. Keller, H., First International Congress of Immunology, Washington, August 1–6, 1971.Google Scholar
  255. Keller, H. U. and E. Sorkin, Studies on chemotaxis. IX. Migration of rabbit leucocytes through filter membranes. Proc. Soc. Exp. Biol. Med. 126, 677 (1967).Google Scholar
  256. Keller, H. U. and E. Sorkin, Chemotaxis of leucocytes. Experientia 24, 641 (1968).PubMedCrossRefGoogle Scholar
  257. Snyderman, R., H. Gewurz and S. E. Mergenhagen, Interactions of the complement system with endotoxic lipopolysaccharide : Generation of a factor chemotactic for polymorphonuclear leucocytes. J. Exp. Med. 128, 259 (1968).PubMedCrossRefGoogle Scholar
  258. Sorkin, E., V. J. Stecher and J. F. Borel, Chemotaxis of leucocytes and Ser. Haemat. Vol. 3, 1, 131 (1970).Google Scholar
  259. Taylor, F. B. and P. A. Ward, Generation of chemotactic activity in rabbit serum by plasminogen-streptokinase mixtures. J. Exp. Med. 126, 149 (1967).PubMedCrossRefGoogle Scholar
  260. Ward, P. A., A plasmin-split fragment of C3 as a new chemotactic factor. J. Exp. Med. 126, 189 (1967).PubMedCrossRefGoogle Scholar
  261. Ward, P. A., C. G. Cochrane and H. J. Müller-Eberhard, The role of serum complement in chemotaxis of leukocytes in vitro. J. Exp. Med. 122, 327 (1965).PubMedCrossRefGoogle Scholar
  262. Ward, P. A. and L. J. Newman, A neutrophil chemotactic factor from human C5. J. Immunol. 102, 93 (1969).PubMedGoogle Scholar
  263. Ward, P. A., M. C. Conroy and I. H. Lepow, Complement derived cleavage products with leukotactic activity generated by streptococcal proteinase (abstr.). Fed. Proc. 30, 355 (1971).Google Scholar
  264. Ward, P. A. and J. H. Hill, Role of complement in the generation of leukotactic mediators in immunologic and non-specific tissue injuries. In: Immunopathology of Inflammation, p. 52, Forscher, B. K. and Houck J. C. Eds. Excerpta Medica (Amsterdam 1971).Google Scholar
  265. Zigmond, S. H., First International Congress of Immunology, Washington, August 1–6 (1971).Google Scholar
  266. Rother, K., U. Rother und F. Schindera, Passive Arthus-Reaktion bei Komplementdefekten Kaninchen. Z. Immun, forsch. 126, 473 (1964).Google Scholar
  267. Rother, K., Leukocyte mobilising factor: A new biological activity derived from the third component of complement. Eur. J. Immunol. 2, 550 (1972).PubMedCrossRefGoogle Scholar
  268. Miller, M. E., J. Seals, R. Kaye and L. C. Levitsky, A familial, plasma-associated defect of phagocytosis. A new cause of recurrent bacterial infections. Lancet 1968/II, 60.CrossRefGoogle Scholar
  269. Miller, M. E. and U. R. Nilsson, A familial deficiency of the phagocytosis enhancing activity of serum related to a dysfunction of the fifth component of complement (C5). N. Eng. J. Med. 282, 354 (1970).CrossRefGoogle Scholar
  270. Nilsson, U. and M. Miller, Studies on the opsonic activity of C5 from normal and opsonically deficient human sera (abstr.). Z. med. Mikrobiol. u. Immunol. 155, 105 (1969).Google Scholar
  271. Shin, H. S., M. R. Smith and W. B. Wood, Heat labile opsonins to pneumococcus. II. Involvement of C3 and C5. J. Exp. Med. 130, 1229 (1969).PubMedCrossRefGoogle Scholar
  272. Austen, K. F., K. J. Bloch, AR. Baker and B. G. Arnason, Immunological histamine release from rat mast cells in vitro: Effect of age of cell donor. Proc. Soc. exp. Biol. Med. 120, 542 (1965).Google Scholar
  273. Austen, K. F. and E. L. Becker, Mechanisms of immunologic injury of rat peritoneal mast cells. II. Complement requirement and phosphonate ester inhibition of release of histamine by rabbit anti-rat gamma globulin. J. Exp. Med. 124, 397 (1966).PubMedCrossRefGoogle Scholar
  274. Bartosch, R., W. Feldberg und E. Nagel, Das Freiwerden eines histaminähnlichen Stoffes bei der Anaphylaxie des Meerschweinchens. Pflügers Arch. ges. Physiol. 230, 129 (1932).CrossRefGoogle Scholar
  275. Bloch, K. J., The antibody in anaphylaxis. In: Cellular and humoral mechanisms in Anaphylaxis and Allergy, p. 1 (Basel/NewYork 1969).Google Scholar
  276. Bodammery G. and W. Vogt, Contraction of the guinea-pig ileum induced by anaphylatoxin independent of histamine release. Int. Arch. Allergy 39, 648 (1970).CrossRefGoogle Scholar
  277. Bodammer, G. und W. Vogt, Beeinflussung der Kapillarpermeabilität in der Meerschweinchenhaut durch Anaphylatoxin (AT). Naun.- Schmiedeb. Arch. Pharmak. 266, 255 (1970).CrossRefGoogle Scholar
  278. Brade, V. and W. Vogt, Anaphylatoxin formation by contact activation of plasma. I. Activation by zymosan without participation of antibody. Eur. J. Immunol. 1, 290 (1971).PubMedCrossRefGoogle Scholar
  279. Brade, V. and W. Vogt, Anaphylatoxin formation by contact activation of plasma. II. Implication of properdin and an unknown plasma factor in activation by zymosan. Eur. J. Immunol. 1, 295 (1971 a).PubMedCrossRefGoogle Scholar
  280. Broder, I., Comparison of histamine release by anaphylatoxin and by soluble immune complexes. Fed. Proc. 29, 639 (1970).Google Scholar
  281. Cochrane, C. G. and H. J. Müller-Eberhard, The derivation of two distinct anaphylatoxin activities from the third and fifth components of human complement. J. Exp. Med. 127, 371 (1968).PubMedCrossRefGoogle Scholar
  282. Dale, H. H., The anaphylactic reaction of plain muscle in the guinea-pig. J. Pharmacol. Exp. Ther. 4, 167 (1913).Google Scholar
  283. Dale, H. H. and P. P. Laidlaw, The physiological action of ß-iminazolylethylamine. J. Physiol. (London) 41, 318 (1910).Google Scholar
  284. Friedberger, E., Weitere Untersuchungen über Eiweißanaphylaxie IV. Mitteilung. Z. Immunitätsforsch. 4, 636 (1910).Google Scholar
  285. Friedberger, E. und T. Ito, Über Anaphylaxie: XXI. Mitteilung. Näheres über den Mechanismus der Komplementwirkung bei der Anaphylatoxinbildung in vitro. Z. Immunitätsforsch. 11, 471 (1911).Google Scholar
  286. Friedberger, E., S. Mita und T. Kumagai, Die Bildung eines akut wirkenden Giftes (Anaphylatoxin) aus Toxinen (Tetanus, Diphtherie, Schlangengift). (Über Anaphylaxie, XXXIV. Mitteilung). Z. Immunitätsforsch. 17, 506 (1913).Google Scholar
  287. Greisman„ S. E., Activation of histamine-releasing factor in normal rat plasma by E. coli endotoxin. Proc. Soc. exp. Biol. Med. 103, 628 (1960).PubMedGoogle Scholar
  288. Hahn, F., Zur Anaphylatoxinfrage. Naturwiss. 41, 465 (1954).CrossRefGoogle Scholar
  289. Hahn, F. und A. Oberdorf, Antihistaminica und anaphylaktoide Reaktionen. Z. Immunitätsforsch. 107, 528 (1950).Google Scholar
  290. Hahn, F. und A. Lange, Das Anaphylatoxin. Eine alte Theorie der Anaphylaxie in neuer Sicht. Dtsch. med. Wschr. 81, 1269 (1956).PubMedGoogle Scholar
  291. Jensen, J., Anaphylatoxin in its relation to the complement system. Science 155, 1122 (1967).PubMedCrossRefGoogle Scholar
  292. Jensen, J. A., R. Snyderman and S. E. Mergenhagen, Chemotactic activity, a property of guinea pig C5-anaphylatoxin. In: Cellular and Humoral Mechanisms in Anaphylaxis and Allergy, p. 265 (Basel/New York 1969).Google Scholar
  293. Lepow, I. H., W. Dias da Silva and J. W. Eisele, Nature and biological properties of human anaphylatoxin. In: Biochemistry of the acute allergic reaction, p. 265. Eds.: Austen, K. F., Becker, E. L. (Oxford, Edinburgh 1968).Google Scholar
  294. Lepow, I. H., K. Wilms-Kretschmer, R. A. Patrick and F. S. Rosen, Gross and ultrastructural observations on lesions produced by intradermal injection of human C3a in man. Amer. J. Pathol. 61, 13 (1970).Google Scholar
  295. Lichtenstein, L. M., H. Gewurz, N. F. Adkinson, H. S. Shin and S. E. Mergenhagen, Interactions of the complement system with endotoxic lipopolysaccharide : The generation of an anaphylatoxin. Immunology 16, 327 (1969).PubMedGoogle Scholar
  296. Netzer, W. und W. Vogt, Anaphylatoxinbildung durch pyrogenes Lipopolysaccharid. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 248, 261 (1964).Google Scholar
  297. Osler, A. G., H. G. Randall, B. M. Hill and Z. Ovary, Studies on the mechanism of hypersensitivity phenomena. III. The participation of complement in the formation of anaphylatoxin. J. Exp. Med. 110, 311 (1959).PubMedCrossRefGoogle Scholar
  298. Rocha e Silva, M., O. Bier and M. Aronson, Histamine release by anaphylatoxin. Nature 168, 465 (London 1951).CrossRefGoogle Scholar
  299. Shin, H. S., R. Snyderman, E. Friedman, A. Mellors and M. M. Mayer, Chemotactic and anaphylatoxic fragment cleaved from the fifth component of guinea pig complement. Science 162, 361 (1968).PubMedCrossRefGoogle Scholar
  300. Snyderman, R., H. Gewurz and S. E. Mergenhagen, Interactions of the complement system with endotoxic lipopolysaccharide. Generation of a factor chemotactic for polymorphonuclear leukocytes. J. Exp. Med. 128, 259 (1968).PubMedCrossRefGoogle Scholar
  301. Snyderman, R., H. S. Shin, J. K. Phillips, H. Gewurz and S. E. Mergenhagen, A neutrophil chemotactic factor derived from C5 upon interaction of guinea pig serum with endotoxin. J. Immunol. 103, 413 (1969).PubMedGoogle Scholar
  302. Stegemann, H., R. Hillebrecht und W. Rien, Zur Chemie des Anaphylatoxins. Z. Physiolog. Chem. 340, 11 (1965).CrossRefGoogle Scholar
  303. Vogt, W., Preparation and some properties of anaphylatoxin from hog serum. Biochem. Pharmacol. 17, 727 (1968).PubMedCrossRefGoogle Scholar
  304. Vogt, W., M. Lieflander, K.-H. Stalder, E. Lufft and G. Schmidt, Functional identity of anaphylatoxin preparations obtained from different species and by different activation procedures. II. Immunological identity. Eur. J. Immunol. 1, 139 (1971).PubMedCrossRefGoogle Scholar
  305. Windaus, A. und W. Vogt, Synthese des Imidazolyläthylamins. Ber. Dtsch. chem. Ges. 40, 3691 (1907).CrossRefGoogle Scholar
  306. Borel, J. F., H. U. Keller and E. Sorkin, Studies on chemotaxis. XI. Effect on neutrophils of lysosomal and other subcellular fractions from leucocytes. Int. Arch. Allergy 35, 194 (1969).PubMedCrossRefGoogle Scholar
  307. Cochrane, C. G. and H. J. Müller-Eberhard, The derivation of two distinct anaphylatoxin activities from the third and fifth components of human complement. J. Exp. Med. 127, 371 (1968).PubMedCrossRefGoogle Scholar
  308. Cohn, Z. A. and J. G. Hirsch, The isolation and properties of the specific cytoplasmic granules of rabbit polymorphonuclear leucocytes. J. Exp. Med. 112, 983 (1960).PubMedCrossRefGoogle Scholar
  309. Cornelly, H. P., Reversal of chemotaxis in vitro and chemotactic activity of leucocyte fractions. Proc. Soc. exp. Biol. Med. 122, 831 (1966).Google Scholar
  310. Golub, E. S. and J. K. Spitznagel, The role of lysosomes in hypersensitivity reactions: Tissue damage by polymorphonuclear neutrophil lysosomes. J. Immunol. 95, 1060 (1966).Google Scholar
  311. Jensen, J. A R. Snyderman and S. E. Mergenhagen, Chemotactic activity, a property of guinea pig C5-anaphylatoxin. In: Cellular and Humoral Mechanisms in Anaphylaxis and Allergy, p. 265 (Basel/New York 1969).Google Scholar
  312. Keller, H. U. and E. Sorkin, Studies on chemotaxis. V. On the chemotactic effect of bacteria. Int. Arch. Allergy 31, 505 (1967).CrossRefGoogle Scholar
  313. Lovetty C. A. and H. Z. Movaty Role of PMN-leucocyte lysosomes in tissue injury, inflammation and hypersensitivity. III. Passive cutaneous anaphylaxis in the rat with homologous and heterologous hyperimmune antibody. Proc. Soc. exp. Biol. Med. 122, 991 (1966).Google Scholar
  314. Mayer, M. M., H. S. Shin, M. R. Smith and R. Snyderman, On the role of C3 and C5 in chemotaxis and phagocytosis. 2. med. Mikrobiol. u. Immunol. 155, 99 (1969).Google Scholar
  315. Shin, H. S., R. J. Pickering, M. M. Mayer and C. T. Cooky Guinea pig C5. J. Immunol. 101, 813 (1968).Google Scholar
  316. Shin, H. S., R. Snyderman, E. Friedman, A. Mellors and M. M. Mayer, Chemotactic and anaphylatoxic fragment cleaved from the fifth component of guinea pig complement. Science 162, 361 (1968).PubMedCrossRefGoogle Scholar
  317. Shin, H. S., H. Gewurz and R. Snyderman, Reaction of cobra venom factor with guinea pig complement and generation of an activity chemotactic for polymorphonuclear leucocytes. Proc. Soc. exp. Biol. Med. 131, 203 (1969).PubMedGoogle Scholar
  318. Shin, H. S., R. Snyderman, E. Friedman and S. E. Mergenhagen, Cleavage of guinea pig C3 by serum-treated endotoxic lipopolysaccharide (abstr.). Fed. Proc. 28, 485 (1969).Google Scholar
  319. Snyderman, R., H. Gewurz and S. E. Mergenhagen, Interactions of the complement system with endotoxic lipopolysaccharide. Generation of a factor chemotactic for polymorphonuclear leucocytes. J. Exp. Med. 128, 259 (1968).PubMedCrossRefGoogle Scholar
  320. Snyderman, R., H. S. Shin, J. K. Phillips, H. Gewurz and S. E. Mergenhagen, A neutrophil chemotactic factor derived from C5 upon interaction of guinea pig serum with endotoxin. J. Immunol. 103, 413 (1969).PubMedGoogle Scholar
  321. Snyderman, R., J. Phillips and S. E. Mergenhagen, Polymorphonuclear leucocyte chemotactic activity in rabbit serum and guinea pig serum treated with immune complexes: evidence for C5a as the major chemotactic factor. Infec. Immun. 1, 521 (1970).Google Scholar
  322. Snyderman, R., J. Phillips, J. Kennedy and S. E. Mergenhagen, Role of C5 in the accumulation of polymorphonuclear leukocytes (PMNS) in mice treated with endotoxin (abstr.). Fed. Proc. 30, 355 (1971).Google Scholar
  323. Taubman, S. B., P. R. Goldschmidt and J. H. Lepow, Effects of lysosomal enzymes from human leukocytes on human complement components. Fed. Proc. 29, 343 (1970).Google Scholar
  324. Ward, P. A.A plasmin-split fragment of C3 as a new chemotactic factor. J. Exp. Med. 126, 189 (1967).PubMedCrossRefGoogle Scholar
  325. Ward, P. A., Complement factors involved in chemotaxis of human eosinophils and a new chemotactic factor for neutrophils from C5. J. Immunol. 101, 818 (1968).Google Scholar
  326. Ward, P. A., Chemotaxis of mononuclear cells. J. exp. Med. 128, 1201 (1968 a).PubMedCrossRefGoogle Scholar
  327. Ward, P. A. and L. J. Newman, A neutrophil chemotactic factor from human C5. J. Immunol. 102, 93 (1969).PubMedGoogle Scholar
  328. Ward, P. A. and J. H. Hill, C5 chemotactic fragments produced by an enzyme in lysosomal granules of neutrophils. J. Immunol. 104, 535 (1970).PubMedGoogle Scholar
  329. Volk, H., D. Mauersberger, K. Rother and U. Rother, Prolonged survival of skin homografts in rabbits defective in the third component of complement. Ann. N. Y. Acad. Sci. 120, 26 (1964).PubMedCrossRefGoogle Scholar
  330. Zimmermann, T. S., C. M. Arroyave and H. J. Müller-Eberhard, A blood coagulation abnormality in C6 deficient rabbits and its correction by purified C6 (abstr.). J. Immunol. 107, 318 (1971).Google Scholar
  331. Becker, E. L., Small molecular weight inhibitors of complement action. In: Ciba Foundation Symposium Complement, S. 58. Eds.: Wolstenholme, G. E. W., Knight, J. (Boston 1965).Google Scholar
  332. Becker, E. L., Enzymatic mechanisms in complement-dependent chemotaxis. Fed. Proc. 28, 1704 (1969).PubMedGoogle Scholar
  333. Becker, E. L. and P. A. Ward, Partial biochemical characterization of the activated esterase required in the complement-dependent chemotaxis of rabbit polymorphonuclear leucocytes. J. Exp. Med. 125, 1021 (1967).PubMedCrossRefGoogle Scholar
  334. Becker, E. L. and P. A. Ward, Esterases of the polymorphonuclear leukocyte capable of hydrolyzing acetyl DL-phenyl-alanine ß-naphtyl ester. J. Exp. Med. 129, 569 (1969).PubMedCrossRefGoogle Scholar
  335. Boyden, S. V., The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J. Exp. Med. 115, 453 (1962).PubMedCrossRefGoogle Scholar
  336. Cochrane, C. G., W. O. Weigle and F. J. Dixon, The role of polymorphonuclear leukocytes in the initiation and cessation of the Arthus vasculitis. J. Exp. Med. 110, 481 (1959).PubMedCrossRefGoogle Scholar
  337. Cochrane, C. G., E. R. Unanue and F. J. Dixon, A role of polymorphonuclear leucocytes and complement in nephrotoxic nephritis. J. Exp. Med. 122, 99 (1965).PubMedCrossRefGoogle Scholar
  338. Hausman, M. S., R. Snyderman and S. E. Mergenhagen, Humoral factors chemotactic for mononuclear leucocytes (abstr.). Fed. Proc. 30, 355 (1971).Google Scholar
  339. Horwitz, D. A., The relative responsiveness of mononuclear and polymorphonuclear leukocytes to bacterial and serum chemotactic factors (abstr.). Fed. Proc. 30, 355 (1971).Google Scholar
  340. Humphrey, J. H., The mechanism of Arthus reaction. I. The role of polymorphonuclear leukocytes and other factors in reversed passive Arthus reactions in rabbits. Brit. J. exp. Path. 36, 268 (1955).PubMedGoogle Scholar
  341. Humphrey, J. H., The mechanism of the Arthus reaction. II. The role of polymorphonuclear leucocytes and platelets in reversed passive Arthus reactions in the guinea pig. Brit. J. exp. Path. 36, 283 (1955 a).PubMedGoogle Scholar
  342. Keller, H. U. and E. Sorkin, Studies on chemotaxis. IX. Migration of rabbit leucocytes through filter membranes. Proc. Soc. Exp. Biol. Med. 126, 677 (1967).Google Scholar
  343. Miller, M. E., F. A. Oski and M. B. Harris, Lazy- leucocyte syndrom. A new disorder of neutrophil function. Lancet 1, 665 (1971).PubMedCrossRefGoogle Scholar
  344. Müller-Eberhard, H. J., U. R. Nilsson, A. P. Dalmasso, M. J. Polley and M. A. Calcott, A molecular concept of immune cytolysis. Arch. Path. 82, 205 (1966).PubMedGoogle Scholar
  345. Rebuck, J. W. and J. H. Crowley, A method of studying leukocytic functions in vivo. Ann. N. Y. Acad. Sci. 59, 757 (1955).PubMedCrossRefGoogle Scholar
  346. Rother, U. und K. Rother, Über einen angeborenen Komplement-Defekt bei Kaninchen. 2. Immunitätsforsch. 121, 224 (1961).Google Scholar
  347. Rother, K., U. Rother, H.J. MüllerEberhard and U. R. Nilsson, Deficiency of the sixth component of complement in rabbits with an inherited complement defect. J. Exp. Med. 124, 773 (1966).PubMedCrossRefGoogle Scholar
  348. Snyderman, R., (1971) persönliche Mitteilung.Google Scholar
  349. Snyderman, R., H. Gewurz and S. E. Mergenhagen, Interactions of the complement system with endotoxic lipopolysaccharide; generation of a factor chemotactic for polymorphonuclear leucocytes. J. Exp. Med. 128, 259 (1968).PubMedCrossRefGoogle Scholar
  350. Snyderman, R., H. S. Shin, J. K. Phillips, H. Gewurz and S. E. Mergenhagen,A neutrophil chemotactic factor derived from C5 upon interaction of guinea pig serum with endotoxin. J. Immunol. 103, 413 (1969).PubMedGoogle Scholar
  351. Snyderman, R., J. Phillips and S. E. Mergenhagen, Polymorphonuclear leucocyte chemotactic activity in rabbit serum and guinea pig serum treated with immune complexes: evidence for C5a as the major chemotactic factor. Infec. Immun. 1, 521 (1970).Google Scholar
  352. Snyderman, R., H. S. Shin and M. S. Hausman, C5a: A chemotactic factor for mononuclear leukocytes. J. Immunol. 107, 316 (1971).Google Scholar
  353. Sorkin, E., V. J. Stecher and J. F. Borel, Chemotaxis of leucocytes and inflammation. Ser. Haemat. 3, 1, 131 (1970).Google Scholar
  354. Stecher, V. J. and E. Sorkin, Studies on chemotaxis. XII. Generation of chemotactic activity for polymorphonuclear leucocytes in sera with complement deficiencies. Immunology 16, 231 (1969).PubMedGoogle Scholar
  355. Stetson, C. A., Similarities in the mechanisms determining the Arthus and Shwartzman phenomena. J. exp. Med. 94, 347 (1951).PubMedCrossRefGoogle Scholar
  356. Ward, P. A., Chemotaxis of mononuclear cells. J. Exp. Med. 128, 1201 (1968).PubMedCrossRefGoogle Scholar
  357. Ward, P. A., Complement factors involved in chemotaxis of human eosinophils and a new chemotactic factor for neutrophils from C5. J. Immunol. 101, 818 (1968 a).Google Scholar
  358. Ward, P. A., Chemotaxis of human eosinophils. A. J. Pathol. 54, 121 (1969).Google Scholar
  359. Ward, P. A. and C. G. Cochrane, A function of bound complement in the development of Arthus reactions. Fed. Proc. 23, 509 (abstr.) (1964).Google Scholar
  360. Ward, P. A., C. G. Cochrane and H. J. Müller-Eberhard, The role of serum complement in chemotaxis of leukocytes in vitro. J. Exp. Med. 122, 327 (1965).PubMedCrossRefGoogle Scholar
  361. Ward, P. A., C. G. Cochrane and H. J. Müller-Eberhard, Further studies on the chemotactic factor of complement and its formation in vivo. Immunology 11, 141 (1966).PubMedGoogle Scholar
  362. Ward, P. A. and E. L. Becker, Mechanisms of inhibition of chemotaxis by phosphonate esters. J. Exp. Med. 125, 1001 (1967).PubMedCrossRefGoogle Scholar
  363. Ward, P. A. and E. L. Becker, The deactivation of rabbit neutrophils by chemotactic factor and the nature of the activatable esterase. J. Exp. Med. 127, 693 (1968).PubMedCrossRefGoogle Scholar
  364. Ward, P. A. and E. L. Becker, Biochemical demonstration of the activatable esterase of the rabbit neutrophil involved in the chemotactic response. J. Immunol. 105, 1057 (1970).PubMedGoogle Scholar
  365. Bennet, W. E. and Z. A. Cohn, The isolation and selected properties of blood monocytes. J. Exp. Med. 123, 145 (1966).CrossRefGoogle Scholar
  366. Huber, H., M. J. Polley, W. D. Linscott, H. H. Fudenberg and H. J. Müller-Eberhard, Human monocytes: distinct receptor sites for the third component of complement and for immunoglobulin G. Science 162, 1281 (1968).PubMedCrossRefGoogle Scholar
  367. Lay, W. H. and V. Nussenzweig, Receptors for complement on leukocytes. J. Exp. Med. 128, 991 (1968).PubMedCrossRefGoogle Scholar
  368. Mayer, M. M., Complement and complement fixation, S. 133. In: E. A. Kabat and Mayer, M. M., Experimental Immunochemistry, 2nd ed. Springfield, Charles C. Thomas (1961).Google Scholar
  369. Müller-Eberhard, H. J., P. Perlmann, H. Perlmann and J. A. Manni, Destruction of complement-target cell complexes by mononuclear leukocytes. In: “Current Problems in Immunology” S. 5; Eds. O. Westphal, H. E. Bock, E. Grundmann (Berlin-Heidelberg-New York 1969).Google Scholar
  370. Olitzki, A. L. and A. Gershon, The production of complement by mononuclear cells from guinea pig lungs. Boll. Ist. Sieroter. milanese 1–2, 46 (1967).Google Scholar
  371. Perlmann, P. and G. Holm, Cytotoxic effects of lymphoid cells in vitro. Advan. Immunol. 11, 117 (1969).CrossRefGoogle Scholar
  372. Perlmann, P., H. Perlmann, H. J. Müller-Eberhard and J. A. Manni, Cytotoxic effects of leukocytes triggered by complement bound to target cells. Science 163, 937 (1969).PubMedCrossRefGoogle Scholar
  373. Rabinowitz, Y., Separation of lymphocytes, polymorphonuclear leucocytes and monocytes on glass columns, including tissue culture observations. Blood 23, 811 (1964).PubMedGoogle Scholar
  374. Adler, F. L., Bactericidal action mediated by antibodies specific for heterologous antigens adsorbed to bacterial cells. Proc. Soc. Exp. Biol. Med. 79, 590 (1952).PubMedGoogle Scholar
  375. Amano, T., S. Inai, T. Seki, S. Kashiba, K. Fujikawa and S. Nishimura, Studies on the immune bacteriolysis. I. Accelerating effect on the immune bacteriolysis by lysozyme-like substance of leukocytes and eggwhite lysozyme. Med. J. Osaka Univ. 4, 401 (1954).Google Scholar
  376. Bayer, M. E. and T. F. Anderson, The surface structure of Escherichia coli. Proc. Nat. Acad. Sci. 54, 1592 (1965).CrossRefGoogle Scholar
  377. Bladen, H. A., R. T. Evans and S. E. Mergenhagen, Lesions in Escherichia colimembranes after action of antibody and complement. J. Bakteriol. 91, 2377 (1966).Google Scholar
  378. Bladen H. A., H. Gewurz and S. E. Mergenhagen, Interactions of the complement system with the surface and endotoxic lipopolysaccharide of Veillonella alcalescens. J. Exp. Med. 125, 767 (1967).CrossRefGoogle Scholar
  379. Borsos,T., R. R. Dourmashkin and J. H. Humphrey, Lesions in erythrocyte membranes caused by immune hemolysis. Nature 202, 251 (1964).PubMedCrossRefGoogle Scholar
  380. Buchner, H., Über die bakterientödtende Wirkung des zellenfreien Blutserums. Zbl. Bakt. 5, 817 (1889) und 6, 1 (1889).Google Scholar
  381. Buchner, H., Über die nähere Natur der bakterientötenden Substanz im Blutserum. Zbl. Bakt. 6, 561 (1889 a).Google Scholar
  382. Ceppellini, R. and M. Landy, Suppression of blood group agglutinability of human erythrocytes by certain bacterial polysaccharides. J. exp. Med. 117, 321 (1963).PubMedCrossRefGoogle Scholar
  383. Chipman, D. M. and N. Sharon, Mechanism of lysozyme action. Science 165, 454 (1969).PubMedCrossRefGoogle Scholar
  384. Davis, S. D. and R. J. Wedgewood, Kinetics of the bactericidal action of normal serum on gram-negative bacteria. J. Immunol. 95, 75 (1965).PubMedGoogle Scholar
  385. Davis, S. D., D. Gemsa and R. J. Wedgewood, Kinetics of the transformation of gram-negative rods to spheroplasts and ghosts by serum. J. Immunol. 96, 570 (1966).PubMedGoogle Scholar
  386. Davis, S. D., D. Gemsa, A. Jannetta and R. J. Wedgewood, Potentiation of serum bactericidal activity by lysozyme. J. Immunol. 101, 277 (1968).PubMedGoogle Scholar
  387. Dozois, T. F., S. Seifter and E. E. Ecker, Immunochemical studies on human serum. IV. The role of human complement in bactericidal phenomena. J. Immunol. 47, 215 (1943).Google Scholar
  388. Feingold, D. S., The serum bactericidal reaction. IV. Phenotypic conversion of E. coli from serum-resistance to serum-sensitivity by diphenylamine. J. Inf. Disease 120, 437 (1969).CrossRefGoogle Scholar
  389. Feingold, D. S., J. N. Goldman and H. M. Kuritz, Locus of the action of serum and the role of lysozyme in the serum bactericidal reaction. J. Bakteriol. 96, 2118 (1968).Google Scholar
  390. Galanos, C., E. T. Rietschel, O. Lüderitz and O. Westphal, Interaction of lipopolysaccharides and lipid A with complement. Eur. J. Biochem. 19, 143 (1971).PubMedCrossRefGoogle Scholar
  391. Glynn, A. A. and C. M. Milne, Lysozyme and immune bacteriolysis. Nature 207, 1309 (1965).PubMedCrossRefGoogle Scholar
  392. Glynn, A. A. and F. A. Medhurst, Possible extracellular and intracellular bactericidal actions of mouse complement. Nature 213, 608 (1967).PubMedCrossRefGoogle Scholar
  393. Glynn, A. A., The complement lysozyme sequence in immune bacteriolysis. Immunology 16, 463 (1969).PubMedGoogle Scholar
  394. Glynn, A. A. and C. J. Howard, The sensitivity to complement of strains of Escherichia coli related to their K antigens. Immunology 18, 331 (1970).PubMedGoogle Scholar
  395. Goldman, J. N., S. Ruddy, K. F. Austen and D. S. Feingold, The serum bactericidal reaction. III. Antibody requirements for killing a rough E. coli. J. Immunol. 102, 1379 (1969).PubMedGoogle Scholar
  396. Green, H., P. Barrow and G. Goldberg, Effect of antibody and complement on permeability control in ascites tumor cells and erythrocytes. J. Exp. Med. 110, 699 (1959).PubMedCrossRefGoogle Scholar
  397. Grohmann, W., Über die Einwirkung des zellenfreien Blutplasma auf einige pflanzliche Microorganismen (SchimmelSpross-pathogene und nicht pathogene Spaltpilze). Inaug. Diss. (Dorpat 1884).Google Scholar
  398. Humphrey, J. H. and R. R. Dourmashkin, Electron microscope studies of immune cell lysis. In: Ciba Found. Symp. Complement S. 175. Eds.:G. E. W. Wolstenholme and J. Knight (Boston 1965).Google Scholar
  399. Humphrey, J. H., R. R. Dourmashkin and S. Payne, The nature of lesions in cell membranes produced by action of complement and antibody. Vth. Int. Symp. Immunopathology, S. 209. Eds.: P. A. Miescher and P. Grabar (Basel 1968).Google Scholar
  400. Humphrey, J. H. and R. R. Dourmashkin, The lesions in cell membranes caused by complement. Advan. Immunol. 11, 75 (1969).CrossRefGoogle Scholar
  401. Iannetta, A. and R. J. Wedgewood, Culture of serum-induced spheroplasts from Vibrio cholerae. J. Bact. 93, 1688 (1967).PubMedGoogle Scholar
  402. Inoue, K., Y. Tanigawa, M. Takubo, M. Satani and T. Amano, Quantitative studies on immune bacteriolysis. II. The role of lysozyme in immune bacteriolysis. Biken J. 2, 1 (1959).Google Scholar
  403. Inoue, K. and R. A. Nelson, The isolation and characterization of a new component of hemolytic complement, C3e. J. Immunol. 95, 355 (1965).PubMedGoogle Scholar
  404. Inoue, K. and R. A. Nelson, The isolation and characterization of a ninth component of hemolytic complement, C3f. J. Immunol. 96, 386 (1966).PubMedGoogle Scholar
  405. Inoue, K., T. Mori and K. Yonemasu, Studies on the C3d of guinea pig complement. Biken J. 10, 143 (1967).PubMedGoogle Scholar
  406. Inoue, K., A. Takamizawa, T. Kurimura and K. Yonemasu, Studies on the immune bacteriolysis. XIII. Leakage of enzymes from Escherichia coli during immune bacteriolysis. Biken J. 11, 193 (1968).PubMedGoogle Scholar
  407. Inoue, K., K. Yonemasu, A. Takamizawa and T. Amano, Studies on the immune bacteriolysis. XIV. Requirement of all nine components of complement for immune bacteriolysis. Biken J. 11, 203 (1968).PubMedGoogle Scholar
  408. Jolies, P., Lysozyme. In: The Enzymes, 2nd Ed. Vol. IV. S. 431. Eds.: Boyer, P. D., Lardy, H., Myrbäck, K. (New York/London 1960).Google Scholar
  409. Jude, A. et P. Nicolle, Persistance, à l’état potential, de la capacité d’élaborer l’antigène Vi chez le bacille typhique cultivé en série à basse temperature. C. R. Acad. Sci. 234, 1718 (Paris 1952).Google Scholar
  410. Kellenberger, E. and A. Ryter, Cell wall and cytoplasmic membrane of Escherichia coli. J. Biophys. Biochem. Cytol. 4, 323 (1958).CrossRefGoogle Scholar
  411. Leon, M. A., O. J. Plescia and M. Heidelberger, The preparation and properties of fractions of pig complement. J. Immunol. 74, 313 (1955).PubMedGoogle Scholar
  412. Lüderitz, O., K. Jann and R. Wheat, Somatic and capsular antigenes of gram-negative bacteria. In: Comprehensive biochemistry, 26 A. (Amsterdam-London-New York 1968).Google Scholar
  413. Maaloe, E.O., On the relation between alexin and opsonin, p. 24 (Kopenhagen 1946).Google Scholar
  414. Malamy, M. H. and L. Horecker, The localization of alkaline phosphatase in E. coli K 12. Biochem. Biophys. Res. Commun. 5, 104 (1961).PubMedCrossRefGoogle Scholar
  415. Mandelstam, J., Isolation of lysozyme soluble mucopeptides from the cell wall of Escherichia coli. Nature 189, 855 (1961).PubMedCrossRefGoogle Scholar
  416. Menzel, J., Possible participation of serum-complement in the intracellular killing of E. coli. The Reticuloendothelial System and Immune Phenomena. Ed: N. R. Di Luzio, Plenum Press (1971).Google Scholar
  417. Michael, J. G. and M. Landy, Endotoxic properties of gram-negative bacteria and their susceptibility to the lethal effect of normal serum. J. infect. Dis. 108, 90 (1961).PubMedCrossRefGoogle Scholar
  418. Muschel, L. H., Bactericidal activity of normal serum against bacterial cultures. II. Activity against Escherichia coli strains. Proc. Soc. Exp. Biol. Med. 103, 632 (1960).PubMedGoogle Scholar
  419. Muschel, L. H., Immune bactericidal and bacteriolytic reactions. In: Complement, Ciba Foundation Symp. p. 155. Eds.: Wolstenholme, G. E. W., Knight, J. (Boston 1965).Google Scholar
  420. Muschel, L. H., Bacterial anatomy and the immune bactericidal reaction. J. Immunol. 101, 818 (1968).Google Scholar
  421. Muschel, L. H. and H. P. Treffers, Quantitative studies on the bactericidal actions of serum complement. I. A rapid photometric growth assay for bactericidal activitiy. J. Immunol. 76, 1 (1956).PubMedGoogle Scholar
  422. Muschel, L. H. and J. E. Jackson, The reactivity of serum against protoplasts and spheroplasts. J. Immunol. 97, 46 (1966).PubMedGoogle Scholar
  423. Muschel, L. H. and L. Gustafson, Antibiotic, detergent, and complement sensitivity of Salmonella typhi after ethylenediaminetetraacetic acid treatment. J. Bact. 95, 2010 (1968).PubMedGoogle Scholar
  424. Muschel, L. H. and L. J. Larsen, Effect of hypertonic sucrose upon the immune bactericidal reaction. Infec. Immun. 1, 51 (1970).Google Scholar
  425. Murray, R. G. E., P. Steed and H. E. Elson, The location of mucopeptide in sections of the cell wall of Escherichia coli and other gramnegative bacteria. Can. J. Microbiol. 11, 547 (1965).PubMedCrossRefGoogle Scholar
  426. Nelson, B. W. and R. J. Roantree, Analysis of lipopolysaccharides extracted from penicillin-resistant, serum-sensitive salmonella mutants. J. Gen. Microbiol. 48, 179 (1967).PubMedGoogle Scholar
  427. Nilsson, U. R. and H. J. Müller-Eberhard, Deficiency of the fifth component of complement in mice with an inherited complement defect. J. Exp. Med. 125, 1 (1967).PubMedCrossRefGoogle Scholar
  428. Nuttall, G., Experimente über die bakterienfeindlichen Einflüsse des thierischen Körpers. Z. Hyg. 4, 353 (1888).CrossRefGoogle Scholar
  429. Osawa, E. and L. H. Muschel, The bactericidal action of normal serum and the properdin system. J. Immunol. 84, 203 (1960).PubMedGoogle Scholar
  430. Pfeiffer, R., Die Differentialdiagnose der Vibrionen der Cholera asiatica mit Hülfe der Immunisierung. Z. Hyg. Infekt. 19, 75 (1895).CrossRefGoogle Scholar
  431. Pfeiffer, R. und R. Isaeff, Über die specifische Bedeutung der Choleraimmunität. Z. Hyg. Infekt. 17, 355 (1894) und 18, 1 (1894).CrossRefGoogle Scholar
  432. Pillemer, L., M. D. Schoenberg, L. Blum and L. Wurz, Properdin system and immunity. II. Interaction of the properdin system with polysaccharides. Science 122, 545 (1955).PubMedCrossRefGoogle Scholar
  433. Polley, M. J., H. J. Müller-Eberhard and J, D. Feldman, Production of ultrastructural membrane lesions by the fifth component of complement. J. Exp. Med. 133, 53 (1971).PubMedCrossRefGoogle Scholar
  434. Reynolds, B. L. and D. Rowley, Sensitization of complement resistant bacterial strains. Nature 221, 1259 (1969).PubMedCrossRefGoogle Scholar
  435. Rosenberg, L. T. and D. K. Tachibana, Activity of mouse complement. J. Immunol. 89, 861 (1962).PubMedGoogle Scholar
  436. Rother, K., Serumkomplement als möglicher Resistenzfaktor: Opsonisierung und Bakterizidie. In: Infektionskrankheiten. Eds. G. Mössner und R. Thomssen (Stuttgart 1967).Google Scholar
  437. Rother, K., U. Rother and M. A. Leon, Quantitative studies of rabbit complement. II. The reaction between the complex EARaCA and rabbit C3. Z. Immun. Forsch. 118, 396 (1959).Google Scholar
  438. Rother, K., U. Rother, K. F. Petersen, D. Gemsa and F. Mitze, Immune bactericidal activity of complement. Separation and description of intermediate steps. J. Immunol. 93, 319 (1964).PubMedGoogle Scholar
  439. Rother, K., U. Rother, H. J. Müller-Eberhard and U. R. Nilsson, Deficiency of the sixth component of complement in rabbits with an inherited complement defect. J. Exp. Med. 124, 773 (1966).PubMedCrossRefGoogle Scholar
  440. Rowley, D., Rapidly induced changes in the level of nonspecific immunity in laboratory animals. Brit. J. Exp. Pathol. 37, 223 (1956).Google Scholar
  441. Rowley, D. and K. J. Turner, Passive sensitization of Salmonella adelaide to the bactericidal action of antibody and complement. Nature 217, 657 (1968).PubMedCrossRefGoogle Scholar
  442. Salton, M. R. J., The bacterial cell wall, S. 243 (New York 1964).Google Scholar
  443. Sophianopoulos, A. J., C. K. Rhodes, D. N. Holcomb and K. E. van Holde, Physical studies of lysozyme. I. Characterization. J. Biol. Chem. 237, 1107 (1962).PubMedGoogle Scholar
  444. Spitznagel, J. K., Normal serum cytotoxicity for 32P-labeled smooth Enterobacteriaceae. II. Fate of macromolecular and lipid phosphorus of damaged cells. J. Bacteriol. 91, 148 (1966).PubMedGoogle Scholar
  445. Spitznagel, J. K., Normal serum cytotoxicity for 32P-labeled. smooth Enterobacteriaceae. III. Isolation of a γG normal antibody and characterization of other serum factors causing 32P loss. J. Bacteriol. 91, 401 (1966 a).PubMedGoogle Scholar
  446. Spitznagel, J. K. and L. W. Wilson, Normal serum cytoxicity for 32P-labeled smooth Enterobacteriaceae. I. Loss of label, death, and ultrastructural damage. J. Bacteriol. 91, 393 (1966).PubMedGoogle Scholar
  447. Swanson, J. and J. Goldschneider, The serum bactericidal system. Ultra- structural changes in Neisseria meningitidis. J. Exp. Med. 129, 51 (1969).PubMedCrossRefGoogle Scholar
  448. Thjøtta, R. and E. Waaler, Dissoziation and sensitiveness to normal serum in dysentery bacilli of type III. J. Bact. 24, 301 (1932).PubMedGoogle Scholar
  449. Wardlaw, A. C., The complement dependent bacteriolytic activity of normal human serum. I. The effect of pH and ionic strength on the role of lysozyme. J. Exp. Med. 115, 1231 (1962).PubMedCrossRefGoogle Scholar
  450. Wardlaw, A. C., The complement-dependent bacteriolytic activity of normal human serum. II. Cell wall composition of sensitive and resistant strains. Canad. J. Microbiol. 9, 41 (1963).CrossRefGoogle Scholar
  451. Weidel, W. and J. Primosigh, Biochemical parallels between lysis by virulent phage and lysis by penicillin. J. Gen. Microbiol. 18, 513 (1958).PubMedGoogle Scholar
  452. Weidel, W., H. Frank and H. H. Martin, The rigid layer of the cell wall of Escherichia coli, strain B. J. Gen. Microbiol. 22, 158 (1960).PubMedGoogle Scholar
  453. Wilson, L. A. and J. K. Spitznagel, Molecular and structural damage to Escherichia coli produced by antibody, complement, and lysozyme systems. J. Bacteriol. 96, 1339 (1968).PubMedGoogle Scholar
  454. Yonemasu, K. and K. Inoue, Studies on the third component (C3) of guinea pig complement. I. Purification and characterization. Biken J. 11, 169 (1968).Google Scholar
  455. Almeida, J. D. and A. P. Waterson, The morphology of virus-antibody interaction. Advan. Virus Res. 15, 307 (1969).CrossRefGoogle Scholar
  456. Berry, D. M. and J. D. Almeida, The morphological and biological effects of various antisera on avian infectious bronchitis virus. J. gen. Virol. 3, 97 (1968).PubMedCrossRefGoogle Scholar
  457. Dozois, T. F. J. C. Wagner, C. M. Chemerda and V. Andrew, The influence of certain serum factors on the neutralization of Western equine encephalomyelitis virus. J. Immunol. 62, 319 (1949).PubMedGoogle Scholar
  458. Oroszlan, S. and R. V. Gilden, Immune virolysis: Effect of antibody and complement on C-type RNA virus. Science 168, 1478 (1970).PubMedCrossRefGoogle Scholar
  459. Gorer, P. A. and P. O’Gorman, The cytotoxic activity of isoantibodies in mice. Transplant. Bull. 3, 142 (1956).Google Scholar
  460. Pappenheimer, A. M., Experimental studies upon lymphocytes. I. The reactions of lymphocytes under various experimental conditions. J. Exp. Med. 25, 633 (1917).PubMedCrossRefGoogle Scholar
  461. Rubin, D., U. Rother and K. Rother, The reactivity of complement in cytotoxicity by isoantibodies (abstr.). Fed. Proc. 26, 362 (1967).Google Scholar
  462. Sanderson, A. R., Cytotoxic reactions of mouse isoantisera: Preliminary considerations. Brit. J. exp. Path. 45, 398 (1964).PubMedGoogle Scholar
  463. Terasaki, P. J., M. L. Esall, J. A. Cannon and W. P. Longmire, Destruction of lymphocytes in vitro by normal serum from common laboratory animals. J. Immunol. 87, 383 (1961).PubMedGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag, Darmstadt 1974

Authors and Affiliations

  • Klaus Rother
    • 1
  1. 1.Univ.-Institut für Immunologie und SerologieHeidelbergGermany

Personalised recommendations